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Abstract: Model-based ideas in finite-population sampling have received renewed discussion in recent years. Their
relationship to the classical ideas in sampling theory do not appear to be universally well understood by samplers in applied
disciplines such as forestry, and ecology more broadly. The two inferential paradigms are constrasted, and explanations are
supplemented with examples of discrete as well as continuously distributed populations. The treatment of spatial structure
is examined, also.

Résuḿe: Les idées sur l’échantillonnage des populations finies basées sur des modèles ont été le sujet de nouvelles
discussions depuis quelques années. Leurs liens avec les idées classiques en théorie de l’échantillonnage ne semblent pas
être universellement bien compris par les personnes effectuant de l’échantillonnage dans des disciplines appliquées telles
que la foresterie et, plus généralement, l’écologie. Les deux paradigmes d’inférences sont comparés et les explications sont
accompagnées d’exemples basés sur des populations distribuées de façon discrète ainsi que continue. Le traitement de la
structure spatiale est aussi examiné.
[Traduit par la ŕedaction]
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The purpose of this article is to elaborate and contrast
design-based with model-based inference in the context of
survey sampling and the estimation of population values. It
is aimed towards those who use sampling methods for pur-
poses of research or public inquiry, who are uncertain of the
essential differences between the two inferential paradigms
and how those differences affect the interpretation of survey
results. As Schreuder et al. (1993, p. 205) pointed out, the
important issue is the recognition that both paradigms have a
solid theoretical basis — they simply differ. It is hoped that
by better understanding these differences, forestry and eco-
logical scientists will appreciate the comparative advantages
and disadvantages of using the sample design versus a pos-
tulated model as the basis for scientific inference, with the
result that a more informed choice of one or the other can be
made.

Since Neyman’s (1934) famous paper read before the
Royal Statistical Society, the literature on survey sampling,
indeed the practice of same, has been dominated by an infer-
ential paradigm wherein inference is independent from any
assumptions about population structure and distribution be-
cause it relies instead on the distribution of all possible esti-
mates permissible under the sampling design. The design is
crucial for inference. The classic texts on sampling such as
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Hansen et al. (1953), Sukhatme and Sukhatme (1970), and
Cochran (1977) expound this paradigm of design-based in-
ference. Survey results from resource inventories in forestry
and ecology have long been interpreted by the design-based
perspective.

Alternative to the design-based framework is one in which
a model serves as the basis for inference about population
parameters in the context of survey sampling (cf. Brewer
1963; Royall 1970; and Cassel et al. 1977). While resource
specialists in forestry and ecology are generally less famil-
iar with model-based inference, there is a growing body of
work within these disciplines that embraces this alternative
inferential framework. Within forestry Ḿatern’s (1960) clas-
sic work on spatial variation is probably the premier example
of model-based inference. Rennolls (1981, 1982), Wood et al.
(1985), Mandallaz (1991), Schreuder et al. (1993), Kangas
(1994), and Eriksson (1995b) have also investigated the util-
ity of model-based inference in forest inventory. These works
notwithstanding, current literature in forestry and ecology in-
dicate much ongoing confusion about the distinction between
these two modes of inference. A failure to appreciate the un-
derpinnings of one or the other mode of inference could lead
to needless abandonment of a survey design that might oth-
erwise be ideal for purposes of scientific inquiry. Of greater
concern is the possibility that unwarranted or mistaken as-
sumptions may lead to inferences whose validity does not
withstand scientific scrutiny. The level of detail and techni-
cal complexity in this article is considerably less than that
of Cassel et al. (1977), yet it is sufficiently explicit to high-
light the differences, and where apt, the similarities of the two
frameworks for inference. Illustrative scenarios of continuous
and discrete populations are provided as examples. Extensive
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presubmission review of the material presented here indicated
that the level of detail and illustrative derivations were triv-
ially apparent and a distraction to some of those well versed
in the relevant issues, while it was revealing and occasionally
challenging to those that had never thoroughly considered the
issues previously. The many numbered examples and remarks
are intended to make the material understandable to a broad
midrange of potential users. Suggestions for further reading
to supplement selected issues raised in this article are made
in the last section.

Remark 1

I conjecture that confusion about model-based inference
has been fostered in part by an uncritical use of the terms
“model-based sampling” and “model-based estimation” in
contexts where model-based inference was intended. In my
view, sample selection cannot be inherently model based.
Sampling may be described aptly as being probabilistic, or
sequential, or purposive, for instance, as these terms imply
broadly the manner in which population elements are selected
into the sample. One might describe the design of the sample
as being model based, and it is perhaps this that Schreuder
and Williams (1995) intended by the phrase “� � � such model-
based sample selection methods as purposive sampling should
yield reliable estimates.”

Estimation, in contrast with sample selection but similar
to the choice of sample design, may appeal to a model struc-
ture, as with the well-known ratio and regression estimators.
But I question the utility of distinguishing between design-
based and model-based estimators: properties of the linear
regression estimator of the population total, say, can be de-
duced with respect to the design or with respect to a presumed
model, which makes it rather equivocal to label the estima-
tor itself as being design based or model based. The crucial
distinction between design-based and model-based alterna-
tives is whether inference, not the estimator, is based on the
model. Hansen et al. (1983) proposed that estimation based on
a model be termed model based and that inference based on
a model be labeled model dependent. This semantic distinc-
tion has not been embraced widely in subsequent statistical
literature, and it is not one to which I adhere. Specifically,
in the remainder of this article, all comparisons of alternative
inferential paradigms will be termed design based or model
based as appropriate to the context.

�� 2SXEXMSR

In the discrete case, the population8 consists ofN ele-
ments. Associated with thekth of these elements is a value,
<N. For multiresource surveys,<

N
may be a vector value,

where each component of the vector is the value correspond-
ing to a distinct resource. For the present, however, I con-
centrate upon the special case where<N is scalar. Associated
with the kth element of the population is aS� � vector,; �

N
,

of auxiliary information. Even in the case where<
N

is scalar,

; �

N
may be vector valued, corresponding to multiple sources

of auxiliary information.
The objective is to estimate some function, sayJ�7\�, of

the population total, where

7\  
;
N�8

<N

In the simplest caseJ�7\� is the identity function, so that7\
is itself the target parameter. In other cases the target may be
the population mean value

J�7
\
�  

7
\

1

or the target may be the population ratio

J�7\�  
7\
7[
 5

Let ,
N

be an indicator of sample inclusion:,
N
 � if the

kth element is selected into the sample, and,
N
 � otherwise.

Let � symbolize the set of all possible samples permissible
under the sampling design, and letS�V� denote the probabil-
ity of selecting sample6 under this design. The probability
of including thekth population element into a sample is by
definition

�N  3URE�,N  ��[1]

 
;
6��

,NS�V�

 
;
6��N

S�V�

where�N is the subset of� comprising all those samples that
include theNth population element. For example under simple
random sampling (SRS) without replacement,�N consists of

�1����

�Q���� �1�Q��
equally likely samples, each with probability

S�V�  Q� �1�Q��

1 �
. Thus

�N  
�1 � ���

�Q� ��� �1 � Q��
� S�V�  

Q

1

When sampling with replacement, whether by SRS or not,
�
N
 �� ��� S

N
�Q, whereS

N
is the probability of selecting

thekth element in each of theQ draws. Notice that�N � QSN
wheneverQ ! �, although for smallS

N
and largeQ, �

N
�

QSN.
The number of distinct elements in a sample is denoted

by �  
3

N�8
,
N
. When sampling with replacement for a

fixed sample size ofQ elements,� � Q whereas without-
replacement sampling ensures that�  Q. With-replacement
designs usually result in� being random whileQ is fixed
whereas other designs result inQ being random, e.g., Poisson
sampling. In the former,(>�@  

3
N�8

�
N
, while in the latter,
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(>Q@  
3

N�8
�N, and neither expected value will necessarily

be integer valued. Obviously when Q is fixed a priori by de-
sign, as in SRS without replacement, Q  (>Q@  

3
N�8

�N.
In the continuous case,

7\  

=
$

< �=� G=

where = specifies the spatial location within the region $
over which the population is dispersed, and < �=� indicates
the spatial response surface at location =. The areal extent
of the population is thus

$  

=
$

G=

so that the population mean value is �\  7\ $. The (contin-
uous) probability density of the sampling procedure is denoted
by I�=�. A uniform density is common, viz. I�=�  � $;
however, I�=� may be something other than the uniform den-
sity, as in applications of importance sampling (Gregoire et
al. 1993, 1995) where it is proportional to a function of aux-
iliary information. Stevens (1997) provided a thoughtful and
illuminating examination of variable probability sampling de-
signs for continuous domains.

�� (IWMKR�FEWIH MRJIVIRGI

In the design-based framework, the population is regarded
as fixed whereas the sample is regarded as a realization of
a stochastic process. In virtually all the standard texts on
sampling, such as those cited in the introductory section, in-
ference is based on the distribution of estimates generated
by the sampling design and free of any assumptions about
the distribution of <N (or < �=� in the continuous case) val-
ues in the population (cf. Särndal 1978; Rao 1997). This
distribution is known as the randomization distribution; the
derivation of this term is obscure but is likely attributable
to Fisher (1935; cf. Box and Anderson 1955, p. 3). A use-
ful concept is that of areference distribution (Fisher 1956,
p. 77; Rao 1985), as it permits an illuminating contrast with
alternative bases of inference. In the context of design-based
inference the distribution to which we refer in order to infer
the statistical properties of estimators is the distribution of
estimates that results from all possible samples permissible
under the sampling design. For example, Stuart (1976) enu-
merated the 15 without-replacement samples of sizeQ  �
from a population of1  �. The 15 estimates corresponding
to these samples is thereference set and their distribution is
the reference distribution.

Plausible models relating< to ; assist during the design
stage to help craft an apt design (e.g., probability proportional
to size, or pps, sampling) or an efficient estimator (e.g., a gen-
eralized ratio estimator of7\), but inference remains firmly
rooted in the design. With the model-assisted approach, as
it has been called, one tries to devise estimators with good
design-based properties and that nonetheless appeal to a de-
scriptive model. S̈arndal et al. (1992) is perhaps the premier

reference to the model-assisted approach to survey sampling,
and these authors’ summary statement (p. 227) is authorita-
tive:

The role of the model � is to describe the finite popu-
lation scatter. We hope the model � fits the population
reasonably well. We think that the finite population
looks as if it might have been generated in accor-
dance with the model �. However, the assumption is
never made that the population was really generated
by the model �. Our conclusions about the finite pop-
ulation parameters are therefore independent of model
assumptions.

In the design-based framework, the probabilistic nature of the
sampling design is crucial, as it is the only source of random-
ness ascribed to each of the possible samples in�. This is not
the case in the model-based approach to inference, as shown
in the next section. Inasmuch as a design such as SRS does
not necessarily imply the use of one particular estimator or
another, the stipulation of both design and estimator is neces-
sary in order to be unequivocal. The combination of a sam-
pling design and estimator is known as asampling strategy
in current vernacular. When(

�
Q
�
 �  Q, an estimator, say

J� H7\�, is said to be consistent ifJ� H7\�  J�7\� whenQ  1 .
Also known as Fisher consistency (Fisher 1973, p. 150), this
concept is distinctly different from a limit in probability that
one encounters in a text on mathematical statistics such as
Bickel and Doksum (1977). H́ajek (1981, p. 40) labeled this
property “representativeness”. Brewer (1994) pointed out that
the notion of consistency enunciated by Neyman (1934) is “a
very different concept” than that currently accepted.

Remark 2
One occasionally hears of “biased sampling,” a term that

is technically incorrect when applied to a probability sam-
ple wherein�N ! � for N  �� � � � � 1 . Bias is a property
of an estimator, not a sample selection scheme; see Smith
(1991) for an elaboration. Clearly, what this term implies is
a sampling strategy that leads to biased results. The moniker
“size-biased sampling” is well entrenched in the sampling
literature, used loosely as a synonym for pps sampling. As
Overton and Stehman (1995, p. 265) tactfully advised, this
phrase “� � � must not be incorrectly interpreted to imply that
sampling with probability proportional to size automatically
creates bias since variable probabilitysamples have no inher-
ent bias. However, bias of theestimator is of concern� � � .”

Customarily the mean and variance of an estimator, i.e.,
the first two moments of the reference distribution, are of
chief concern. Here, I derive both from first principles for
the Horvitz–Thompson (HT) estimator, viz.:

E7\  ;
N�6

\N
�N
 
;
N�8

\N,N
�N

[2]

Because\N is a fixed, not random, value in the design-based
framework, the only thing inE7\ that is random is the inclusion
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of \N into the sample, i.e., whether ,N  � or ,N  �. UsingE7\�V� to signify the value of E7\ provided from a particular
sample in �, one gets by definition

(
K E7\L  ;
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N�8
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N�8

\N
�N

�N  7\

where the defining relation for �N in eq. 1 is used after the
second to last line. I emphasize that this derivation of the
expected value of E7\ is impervious to the distribution of the
I\N� N  �� � � � � 1J in 8 (henceforth denoted \N � 8).

The variance of E7\�
9
K E7\L  ;

6��

�E7\�V�� (
� E7\��� � S�V�

 (
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\

L
�
�
(
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is derived in a parallel fashion. Because

E7 �
\
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(
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the following result is obtained:
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where �N  (
�
,N
�
 (

�
, �
N

�
 3URE

�
,N  �

�
, and where

�NN�  3URE >,N  �� ,N�  �@ is the joint inclusion probabil-
ity of the Nth and N�th elements together.

In the design-based framework the variance of E7\, and
all other estimators, is the variance among the estimates from
all possible samples in the reference set � — the reference
distribution is the distribution of these estimates, not the dis-
tribution of the\N values in the population. This is not meant
to imply that the variance of an estimator of7\ will be un-
affected by the variability of the\N � 8 . Indeed for a few
special cases the variance of an estimator can be expressed
analytically as a function of the variance among the\N � 8 ,
namely �

\
 1��

3
N�8

�\N � �\�
�. But the essential point

to remember is that even in the latter situation the variance of
an estimator and the variance of the\�V are reckoned with re-
spect to two different distributions in the design-based frame-
work. Within this framework the variance of an estimator is
not statistically dependent on the distribution of\N � 8 . In
the model-based framework, this is not the case.

For a spatially distributed discrete population such as
trees in the forest, the spatial distribution of the popula-
tion elements (trees) may affect the joint inclusion probabil-
ities, but not necessarily. With a 3P/Poisson sampling design
(cf. Schreuder et al. 1993), the joint inclusion probability is
�NN�  �N�N� , which demonstrates that it is impervious to
the spatial distribution of trees. With a conventional fixed- or
variable-radius plot sampling design,�NN� depends jointly on
the horizontal distance between treeN and treeN�, plot sizes,
and plot shape. However, even in the latter case in which
the spatial distribution of trees clearly affects their pairwise
inclusion probabilities and thus will impact the variance of
an estimator of7\, the design-based variance of any estima-
tor is unaffected by the presence, or lack thereof, of spatial
covariance between\N and \N� . The notions of spatial dis-
tribution and spatial covariance, and their respective effects
on design-based inference, must be kept distinct. As above,
if the properties of an estimator are contingent upon, i.e., are
derived in a manner which depends upon, a presumed spatial
distribution of the\N � 8 , then inference is no longer design
based. I touch on this topic later in the section that deals with
misconceptions that have been expressed about line intersect
sampling.

Remark 3

For spatial covariance to impinge on inference, some struc-
ture for the population must be assumed, i.e., a population
model, and this structure must be integrated into the infer-
ential machinery. In the design-based setup, it is not, and

©1998 NRC Canada



Review/Synthèse 1433

Fig. 1. (a) Frequency distribution of Liriodendron tulipifera L.
trees, (b) distribution of E7\ from 25 000 samples of size Q  ��,
and (c) normal probability plot of E7\.

spatial correlation is an irrelevant issue. Indictments of clas-
sical sampling theory because “ � � � random sampling over
spatial series does not insure that the sampling units are inde-
pendent” (Bellehumeur et al. 1997) are simply wrong. Such
statements fail to recognize that it is the independence of se-
lections that is crucial in classical sampling theory and that
establishes the validity of design-based inference. This mis-
conception appears to be prevalent not only in the natural
sciences, but also in the environmental and geological sci-
ences (Brus and de Gruijter 1993).

Does E7\ follow a Gaussian distribution? Assuredly not,
for even under SRS with replacement the sampling distribu-
tion is bounded from below by the estimate from the sample
comprisingQ repeated selections of min(\N � 8 ) and from
above by the estimate resulting from the sample ofQ repeated
selections of max(\N � 8 ). Finite population versions of the
Central Limit Theorem have been expounded, e.g., by Hájek
(1960, as cited in S̈arndal et al. 1992, p. 59), which rely on
carefully crafted asymptotic expansions. For reasons cited by
Särndal et al. (1992), the reliance on asymptotic results has
limited appeal when one seeks an interval estimator of a fi-
nite population parameter that attains its nominal coverage, or
close to it. Nonetheless, it is customary to regard the erstwhile
W statistic

7  
J
�H7\�� J�7

\
�UEY KJ �H7\�L

as being approximatelyW-distributed using some appropriate

estimator of varianceEY KJ �H7
\

�L
. Lacking an exact theory for

interval estimation, it is remarkable how closely confidence
intervals based on7 achieve their nominal coverage in many
situations, as has been borne out empirically many times.
Deviation of7 from theW-distribution typically is most acute
in the tail regions, so that nominal 80% intervals perform
better than 90% intervals, which in turn perform better than
95% intervals, and so on, where performance is judged as
the relative departure of the actual coverage rate from the
nominal rate.

Skewed populations will affect the distribution of7 � Pos-

itive skew introduces a positive correlation betweenJ
�H7\�

andEY KJ �H7
\

�L
, thus causing intervals based on theW-distrib-

ution to fail much more often from below than from above,
where failing from below means that the upper endpoint of
the interval is less thanJ�7\�; negative skew induces the
opposite effect. This phenomenon, mentioned by Royall and
Cumberland (1985), was examined in detail by Gregoire and
Schabenberger (1998) for the HT estimatorE7\ and the ratio

estimatorE7
5
 
�E7

\
 E7

[

�
7
[

following SRS without replace-
ment.
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Table 1. Four-element population of Example 2.

N 1 2 3 4

[N 1.0 1.5 2.0 2.2 7[  ��� 5  ����� ���

\N 1.001 79 1.639 06 1.757 26 2.392 58 7\  ����� �� �[\  ����

Table 2. All possible samples and corresponding estimates for Example 2.

Sample Sample [� \ pairs E5 E75
D 1.0, 1.001 79

1.5, 1.639 06 1.0563 7.0775

E 1.0, 1.001 79
2.0, 1.757 26 0.9197 6.1619

F 1.0, 1.001 79
2.2, 2.392 58 1.0607 7.1070

G 1.5, 1.639 06

2.0, 1.757 26 0.9704 6.5015 (
K E75L  ������

H 1.5, 1.639 06

2.2, 2.392 58 1.0896 7.3005 9
K E75L  ������

I 2.0, 1.757 26

2.2, 2.392 58 0.9881 6.6200

U
06(

K E75L  ������

Example 1

Figure �D displays the frequency distribution of bole vol-
umes from a set of 336 yellow-poplar trees (Liriodendron
tulipifera L.). Typical of many biological populations, the
positive skewness of this population is quite evident. From
this population, 25 000 SRS samples of size Q  �� were
selected without replacement using the method described by
Bebbington (1975). The target parameter was total bole vol-
ume, which was 7\  ����� m�. Figure �E displays the
empirical sampling distribution of the HT estimator, E7\, of
7\. The mean of this distribution differed from 7\ by a mere
�����, and its variance differed from its analytically de-
ducible value by less than 0.1%. The closeness of these re-
sults provides some assurance that the sampling error of the
Monte Carlo experiment itself is negligible, despite the fact
that the set of 25 000 samples used in the simulation is tiny
compared with the set of more than � � ���� samples in
the sample space, �. The approximate normality evident in
Fig. �E is examined more specifically in the normal probabil-
ity plot of Fig. �F. The concordance with normality is quite
striking in this instance. Of the 25 000 confidence intervals
constructed at a nominal 90% level, 88.9% actually included
7\, 8.1% missed from below, and 3.0% missed from above.
f

To recap some of the salient features of design-based in-

ference: (i) the population is regarded as fixed in the sense
that a fixed value, \, is associated with each element of the
population (there is no notion that the population has been
“randomized” by some agent or process), (ii) the reference
distribution is the distribution of estimates generated by the
combination of the design and a specific estimator, and (iii)
the statistical properties of estimators are deduced from the
probability weighted moments of the reference distribution.

Example 2

For sake of demonstration, consider a population of size
1  � from which an SRS of sizeQ  � is drawn with-
out replacement for the purpose of estimating the population
total, 7\. The paired[� \ values are displayed in Table 1,
along with the the population totals7[, 7\, the population
ratio 5  7\ 7[, and the correlation between[ and\, �[\.
The sample space� comprises the six samples enumerated in
Table 2; each sample is accompanied by the sample estimateE5  E7\ E7[ and the ratio estimateE75  E5�7[ correspond-
ing to each sample. Averaging over these six equally likely

sample estimates yields(
K E75L  ������, from which the

design bias is computed to be a slight����% of the targeted
value7\  ������. In the design-based framework,E75 is a
biased estimator of7\, irrespective of any stochastic pro-
cess that actually may have generated the population. This
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is commonly misunderstood, perhaps after reading Cochran’s
(1977) statements of conditions under which the ratio estima-
tor is a best linear unbiased estimator (BLUE). Yet Cochran
also unequivocally asserted that BLUEness obtains only when
one bases inference on the model<  �; � �, where
� � 1 ���  �;�. The import of this assertion appears not
to be appreciated by many who believe that design-based
unbiasedness obtains under the same conditions that ensure
model unbiasedness. This example dispels that notion, as the
data analyzed here actually were generated by a<  �;� �
model. I visit this topic again in Example 6b where this pop-
ulation is reanalyzed from a model-based perspective.f

Example 3

With a systematic sampling design, there are many ways
in which auxiliary information,[N � 8 , can be utilized in
order to increase precision of estimation over that possible
when the auxiliary information is ignored. Aside from the
ratio estimator, an effective method is to sort the population
in order of increasing value of the[N � 8 prior to sampling
(cf. Särndal et al. 1992). As with other uses of auxiliary in-
formation, the gain in precision to be realized increases the
more strongly the auxiliary information,[, is correlated with
the characteristic of interest,\. As long as the correlation
is positive, then the act of ordering the population induces
a correlation between adjacent values of\N in the ordered
population that is akin to a spatial correlation. Consider the
population ofQ  �� leaves shown in Fig. 2; the correlation
between leaf area�\� and leaf weight�[� is �  ����, and
the population totals are7\  ���� cm� and7[  ���� g.
Prior to ordering by increasing leaf weight, the correlation
between adjacent leaf area values was 0.143; after ordering,
it was 0.85. Precisely because this lag 1 correlation is so
strong, the effect of ordering on estimation is to decrease the
variation among samples, and hence to reduce the variance
of an estimator of7\. To be specific, consider the sampling
strategy consisting of a 1-in-D systematic sampling design
(eachDth element is selected) coupled with the HT estimator
of 7\. The 1-in-D design ensures that� consists of exactlyD
samples, and that(

�
�
�
 (

�
Q
�
 1 D.1 Because each ele-

ment of the population can appear in but one of the possible
samples,�N  � D� N  �� � � � � 1 , and theE7\ estimator in
eq. 2 collapses to

E7\  DWV[4]

whereWV  
3

N�6
\N. The variance ofE7\ as shown in eq. 3

collapses to

9
K E7\L  D

D;
U �

�WVU � �W ��[5]

1 The sample size, Q, will be random unless mod�1�D�  �.

Fig. 2. Relationship between area and weight for a population of
1  �� leaves.

where�W  7\ D. The last expression makes it quite evident
that the variance of the estimator is the variance among es-
timates. However, the effect of ordering can be appreciated
better by reexpressing eq. 5 in terms of the average correlation
among pairs of\N in the same systematic sample,�Z:

9
K E7\L  1� �

\

Q

�
� � �Q� ���Z

�
[6]

(see Cochran 1977, p. 209; Särndal et al. 1992, p. 79). Or-
dering by size of the auxiliary variable is beneficial when it
makes�Z negative and, it is hoped, lessens its value from
what it is in the population’s original order.

For this example, all 10 of the samples possible from a 1-
in-10 systematic sampling from the original, haphazardly or-
dered leaf population were selected. Then the population was
arranged in order of increasing leaf weight, and all 10 possi-
ble samples under this ordering were selected. From the un-

ordered population,

U
9
K E7\L  ����� cm� whereas from the

ordered population,

U
9
K E7\L  ������ cm� — a 26% in-

crease in precision simply by ordering. The root mean square

error of the ratio estimator,E75  �E7\ E7[�7[, with the or-

dered population is smaller yet at���� FP�. Clearly, ordering
has an effect on precision, yet precision, or accuracy in the
case ofE75, is reckoned solely on the basis of between-sample
variation of the estimates, not on within-sample variation and
covariation.f

Despite being the dominant paradigm in survey sampling
for well over half a century, inference on the basis of the sam-
pling design has not met with universal acclaim. Hájek (1981,
p. 34) complained “What relevance have samples that could
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have been drawn and their probabilities, if we know that they
have not been drawn? Should not inference be based just on
the particular sample that has been drawn?” Särndal (1978)
speculated that “Someone like R.A. Fisher would more likely
have considered that the randomization is important before,
but not after, the data have been collected.” Some statisti-
cians view the randomness imposed by the sampler to be an
artificial basis for inference (e.g., Basu 1978; Fisher 1956,
p. 99). Sampling with probability proportional to size and the
consequent assignation of differential weights to observations
depending on their size is a tactic that, if not anathema, is re-
garded as at least peculiar by many, although it seems utterly
natural to proponents of the design-based approach. (The no-
tions of conditioning estimation on the observed sample and
the disregard of sample probabilities, at least for the sake of
inference, are features of the model-based approach.) Finally,
when studying populations that change both in time and in
composition, perhaps for the purpose of estimating growth or
change, then the credibility of treating the population as fixed
strikes some, e.g., Eriksson (1995a), as rather Procrustean.

�� 1SHIP�FEWIH MRJIVIRGI

The fundamental difference between the design-based and
the model-based approach to inference in survey sampling is
that the values\�� � � � � \1 are regarded as realizations of ran-
dom variables<�� � � � � <1 (Särndal 1978; Thompson 1997),
and hence the population is a realization of a random process,
called generically a model, a “superpopulation” model, or
just a superpopulation. Not only may inference be concerned
with one or more parameters of the survey population, e.g.,
J�7\� as in the preceding section, but also parameters, say�,
of the superpopulation. Because the presumption of a model
broadens the inference space to include superpopulation pa-
rameters, it requires more assumptions than the design-based
approach. But in this regard, it accords with nearly every-
thing else one does in statistical estimation and prediction: a
model is assumed based on prior experience and subject mat-
ter knowledge, the model is fitted to sample data according
to some criterion (least squares, maximum likelihood, mini-
max risk), the goodness of fit is checked, alterations are made
if deemed warranted, and eventually the results of the fitted
model are proclaimed. This familiarity with fitting models to
data is for some the appeal of model-based inference in the
context of sample surveys (cf. Thomson 1978).

I view a model in a broad sense “to mean any assump-
tions about the structure of the population” (Smith 1994). The
specification of the model may be quite exacting, e.g., the
conditional distribution of< on ; , or it may be something
comparatively unstructured, e.g., an assumption of a Poisson
distribution of< . Irrespective of the level of detail stipulated
by the survey analyst, inference in the model-based approach
stems from the model, not from the sampling design. The ref-
erence distribution is the distribution of< for a given sample,
not the distribution of< over all possible samples. For ex-
ample, estimator variance is reckoned conditionally upon the

sample actually observed; it is the variability of the possi-
ble realizations of< for the set of; values observed in the
sample, where “possible realizations” are governed by the
distribution of< stipulated in the model. For valid inference
in the model-based approach, sample selection still must be
uninformative (see S̈arndal 1978) with respect to< , but it
indeed may be informative, even purposive, with respect to
; and, depending on context, spatial location (=).

In the design-based approach, no uncertainty aboutJ�7\�
remains when the entire population is censused; in the model-
based approach,J�7\� is a random variable, and therefore,
uncertainty about its distribution remains even after a popu-
lation census, as the superpopulation parameters,�, generally
will still not be known with certainty.

Example 4

Consider the mean model given by

<N  ��  �N� �N � 1 ��� ��� FRY��N� �N��  �[7]

Under this model,7
\
� 1 �1��1 ��. If a SRS of sizeQ

is selected, the estimatorE7
\
 1 �\ has a1 �1��1� � Q�

distribution. Compare this result with the moments ofE7
\

under a design-based approach in which(
K E7\L  7\, a

fixed constant, and9
K E7\L  1� �

\

�
�

Q
� �

1

�
when SRS is

without replacement and9
K E7

\

L
 1� �

\

�
Q when SRS is

with replacement. The differences are subtle at first glance,
but meaningful from an inferential standpoint: in the design-
based arena,7\, �

\
 7

\
 1 , and �

\
 1��

3
N�8

�\
N
�

�\�
� are all population parameters whereas� and  � are

model parameters in the model-based approach and7
\

is a
random variable.f

Remark 4

For large1 , one would expect that the mean of the re-
alized population,�\, would be quite close in value to the
mean,�, of the stochastic process having generated the pop-
ulation, and likewise that the population variance, �

\
, would

be close to the superpopulation variance, �. The validity
of inference in the model-based approach depends on how
well <N accords with the stipulated model whereas no model
of population behavior is presumed in the design-based ap-
proach.

Remark 5

Had the sample in Example 4 been selected purposively
— say by choosing theQ � elements at each end of an ordered
(by something other than< ) list — the reference distribution
under model [7] remains unaffected whereas the reference
distribution under the design collapses to the single obtained
value E7\. Model unbiasedness is unaffected by sample selec-
tion, yet design unbiasedness is not. For sake of inference
under model [7], sample selection must be noninformative,
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in the sense as explained by Särndal (1978, p. 33), but it
need not be probabilistic. The design is irrelevant to infer-
ence when the reference distribution is established by the
model, yet obviously, it is all important to inference when
the reference distribution is established by the design.

Example 5D
Consider the regression model with correlated observa-

tions given by

<N  �
�
� �

�
;N �  �N� �N � 1 ��� ��� FRY��N� �N��  �

Thus, 7\ � 1 ��� � ��7[� 1 �>� � �1 � ��� @�.
Example 5E

Consider the regression-through-the-origin model

<N  �;N �  �N
S
;N� �N � 1 ��� ��� FRY��N� �N��  �

A weighted least squares fit of this model to the entire pop-
ulation, namely<N� ;N� N  �� � � � � 1 , yields

E�  7\ 7[  5

Using the postulated distribution for�N, it is evident thatE�
is unbiased for�:

(P

�E� �  (
P
>7< @

7;
 

�

7;
(P

�;
N�8

<N

�

 
�

7;
(
P

�;
N�8

�;N �  �N
S
;N

�

 
�

7;

;
N�8

(
P

K
�;N �  �N

S
;N

L

 
�

7;

;
N�8

�
�;N � (P

K
 �N

S
;N

L �

 
�

7;

;
N�8

�
�;N �  (P > �N @

S
;N

�

 
�

7;

;
N�8

�;N  �

where the subscript “m” indicates expectation with respect to
the model. Since the model stipulates that9P ><N M ;N @  
 �;N, then

9
P

K E� L  �

7 �

;

;
N�8

 �;N  
 �

7;

Thus, E� follows a1 ���  � 7;� distribution.f
Two things highlighted by this example deserve repeated

emphasis: (i) even after fitting the model to the entire pop-
ulation, the model parameters,� and  �, remain unknown;
(ii) since properties of estimators are derived conditionally on
the observed sample,;N is treated as a constant throughout
these derivations. In the design-based framework, an estima-
tor of J�7\� is unbiased if its expected value with respect to
the design coincides withJ�7\�. Obviously, this loses force
in the model-based framework becauseJ�7\� is itself a ran-
dom variable, not a population parameter. In this framework,
an estimator ofJ�7\� is said to be model unbiased when

(
P

K
J� H7\�� J�7\�

L
 �.

Remark 6

How is one to interpret a statement such as “It should be
mentioned thatE5 is an unbiased estimator of5 if and only if
the relationship between[ and\ is linear and goes through
the��� �� point on the[–\ axes?” (Shiver and Borders 1996,
p. 160). Clearly, this statement is true when inference is based
on a model that correctly specifies this relationship and when
the distribution posited by the model is used as the refer-
ence distribution from which the properties of estimators are
derived. Just as clearly, it is false when the randomization
distribution is used as the basis for inference, irrespective of
whether the model holds, e.g., see Example 2. Without further
qualification, such a statement is at best ambiguous and at
worst misleading. Survey designers who rely on the design-
based context of Shiver and Borders, for example, to assert
the design unbiasedness of the ratio estimator will discover
such an assertion to be justly challenged.

Example 6D

The 1  � population of Example 2 was generated by
the model of Example 5b with �  � and �  ����. The
BLUE estimator of� is E5  �<  �;, as first noted by Brewer
(1963). For samples of sizeQ:

9
P
� E5�  � �3

N�6
;N

�
�;
N�6

9
P
�<N M ;N�

 
 �3
N�6

;N

and where the subscript “m” again indicates expectation with
respect to the model. For maximum precision, therefore, one
should choose that sample that maximizes

3
N�6

;N. Such
purposive selection is a foreign notion to design-based devo-
tees, who will rely on stratification to achieve a similar result.

Example 6E

Under the model of Example 5b, the best linear unbiased
predictor of7\ is the familiar E75  E5 � 7[. The variance
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Table 3. Variance of E75 under the
model considered in Example 6b.

Sample E75 9P> E75 � 7\@

D 7.0775 0.5626

E 6.1619 0.4132

F 7.1070 0.3664

G 6.5015 0.3063

H 7.3005 0.2716

I 6.6200 0.1994

of E7
5

under the model is defined to be

9
P

K E7
5
� 7

\

L
 9

P

�¥;
N�6

<
N
� E5;

N�5

;
N

�

�
¥;
N�6

<
N
�
;
N�5

<
N

��

 9P

� E5;
N�5

;N �
;
N�5

<N

�

  �

¥;
N�5

;N

�;
N�6

;N

�
�;
N�6

;N

�  �
;
N�5

;N

  �7[

¥;
N�5

;N

�;
N�6

;N

�

where 5 indicates the set of elements in 8 but not in 6. The
variance of E7

5
under the model for each of the six samples

of Example 2 is displayed in Table 3. The model can be used
to predict values of <N as E<N  ;N

E5. These predicted values
provide an unbiased estimator of  �, namely:

E  �  �Q� ����
;
N�6

�<N � E<N�� ;N

which can be used to compute an estimator of 9
P

K E7
5
� 7

\

L
:

EY K E75 � 7\
L
 E �7[¥;

N�5

;N

�;
N�6

;N

�

which Royall (1971) called “a useful, if crude, indicator of
the after sampling uncertainty” inE7

5
.

Remark 7
Within a modeling framework, it is customary to deter-

mine optimal estimators, such as the BLUE in the preced-
ing example. Doing similarly in a design-based framework
is fruitless, as first established by Godambe (1955; also see
Lanke 1975).f

Example 7
Consider the simple mean model of Example 4 again.

Suppose now that the SRS design is replaced by one in which
the inclusion probabilities are unequal. The bias, where ex-
pectation is reckoned with respect to the model, of the HT
estimator is

(
P

� E7
\
� 7

\

�
 (

P

�;
N�6

���
N

<
N

�
� 7

\

 (P

�;
N�6

���
N

�
��  �N

��� 7\

 
;
N�6

���
N

�
�� (

P

�
 �

N

���1�

 �

¥;
N�6

���
N
�1

�

Thus, whenever
3

N�6
���
N

� 1 , the HT estimator is a bi-
ased estimator of7\ when inference is based on model [7] of
Example 4. The bias may be slight in large samples: because3

N�6
���
N

is the HT estimator of1 , it is design unbiased as
an estimator of1 , and consequently, its deviation from1 is
expected to be small in large samples. Nonetheless, the model
bias of the HT estimator,E7\, is nonzero, in general, under
unequal probability sample designs, a result that is anathema
to many proponents of design-based inference.f

A further contrast of the design-based approach and the
model-based approach but with a continuously distributed
population is considered next.

Example 8
The effect of harvesting and site preparation on soil tem-

perature is an important concern of forest management. Let
$ denote a region recently harvested whose area is

$  

=
$

G=

where= indicates location in the two-dimensional plane of
$. In the following, I abide by the convention used in the
preceding section but not mentioned explicitly, of denoting
a random variable in uppercase and a fixed quantity in low-
ercase. Suppose that the objective is to estimate the average
soil temperature within$. In the design-based framework
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the target parameter is �
\

 $��
5
$

\�]� G], where \�]�
represents the soil temperature at location ]. One can choose
Q locations independently and uniformly at random over $,
i.e., an SRS of Q pairs of coordinates along orthogonal axes,
in which case, each sample location = is random (under the
design), and then estimate �

\

by

�\  Q��
Q;

N �

\�=
N

�

where =
N

is the Nth randomly selected location. The variance
of �\ is

9 > �\ @  $��
=
$

�
\�=�� �

\

�
�

G]

which is estimated unbiasedly by

EY > �\ @  �Q�Q� �����;
N�6

�
\�=

N

�� �\��
As with Example 3, the spatial correlation is an irrelevant
concern when variance is reckoned with respect to the ran-
domization distribution.

In a model-based framework, one could envision a simple
mean model

< �]�  �� �� � � 1 ���  ��

FRY
�
< �]�� < �] � K�

�
  �&�K�� K ! �

In this setup, &�K� denotes the spatial correlation in soil tem-
peratures separated by a distance K on the ground. Interest
may focus on the fixed parameter, �, or the finite population
value

�<  $��
=
$

< �]� G]

The minimum variance linear unbiased estimator of � is, from
de Gruijter and ter Braak (1990), the generalized least squares
estimator

H�  9
P
> H� @��&��

V
<
V
�]�[8]

where � is a unit vector of length Q, &
V

is the Q � Q sam-
ple covariance matrix, <

V
�]� is the Q-vector of sample soil

measurements, and 9
P
> H� @ is the scalar variance of H�, viz.

9
P
> H� @  ���&��

V
�
�
��

I emphasize that in this model-based framework, soil tem-
perature is the random variable, while sample location is re-
garded as fixed: even if sample locations ]

N

� $ are selected
at random, that fact plays no role in estimation and inference.
The upshot of this circumstance is that it may behoove the
sampler to locate the ]

N

according to some rational design,
e.g., to spread the sample out evenly over $. In this frame-
work the correlation among the < �]

N

� variables is explicitly

treated via &
V
. The estimator H� remains model unbiased even

when the spatial correlation is ignored, say by setting &
V

to
the identity matrix in eq. 8; however, H� would no longer be
BLU.

The best linear unbiased predictor (BLUP) of the spatial
mean, �< , is

H<  H�� �&��

V
� 9

P
�H��&��

V
-&��

V

�
�&
6�$

<
V
�]�

where -  ��� and �&
6�$

denotes the vector of mean co-
variances between each sample point and all points in $ (de
Gruijter and ter Braak 1990; also see Corsten 1989). f

Remark 7D
Does �< differ from �

\

? Yes: �
\

in the design-based
framework is a parameter of the fixed population whereas
�< in the model-based framework is a random variable.

Remark 7E
It is beyond the scope of this article to discuss ways in

which &�K� and hence &
V

might be parametrized; I defer
to Cressie (1991), Deutsch and Journel (1992), or other texts
on spatial statistics. Ripley (1981) described several spatial
point processes; Diggle (1983) described tests for complete
spatial randomness.

Whether � or �< is of principal interest depends on the
purpose of the investigation. The model mean may be of inter-
est for process-oriented investigations whereas the population
mean may be more relevant when interest lies in the specific
region $, not to some broader inference space (de Gruijter
and ter Braak 1990). In other words, �< may be the focus
of attention when a particular population within $ is the pri-
mary concern; when the process that generated the population
is the primary concern, then � will more likely be the focus
of attention. For example, if one is interested in discerning
whether different combinations of harvesting and site prepa-
ration regimes affect soil temperature, then �, not �< , will be
the object of interest: �< will vary among replicates of stands
subjected to identical treatments.

To recap some of the salient features of model-based in-
ference: (i) the population is regarded as a realization of a
stochastic process, and the value \

N

associated with the Nth
population element is a realization of a random variable, <

N

,
(ii) the reference distribution is the probability distribution for
<
N

� 8 stipulated by the model, (iii) the statistical properties
of estimators are deduced conditionally upon the observed
sample and the stipulated model, and (iv) the sample design
is irrelavant to inference, although probabilistic selection may
help to make estimation robust to model misspecification.

One of the chief complaints lodged against using a pre-
sumed model as the basis for inference, indeed perhaps the
major impediment to broader employment of model-based
inference, is the potential for serious bias when the model
is misspecified. This lack of robustness is the major theme
explored in Hansen et al. (1983). Various tactics, such as de-
signing the sample to be “balanced on X” (cf. Royall and
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Herson 1973a, 1973b), have been proposed as a way to make
inference more robust in the event of model misspecifica-
tion. Nonetheless, there remains a pervasive suspicion that
the model is riskier than the design as a basis for inference.
In parallel to the complaint against design-based inference
that the source of randomness is artificial is the following
complaint voiced by Smith (1994) about the use of models:

. . . models, in the strict scientific sense allowing for
replicated measurement, do not exist in much of social
science. In the absense of models for the underlying
social processes which are generally held to be true,
model-based inferences lose all their desirable proper-
ties.

Those of us involved with devising sampling strategies to
monitor recreation use, e.g., Gregoire and Buhyoff (1998),
are sympathetic to this view. Moreover, many involved with
multiresource inventories of biological phenomena would ar-
gue similarly to Smith — believable biological models simply
are lacking in many settings and circumstances. As Olsen and
Schreuder (1997, p. 174) succinctly stated, “The dynamics
in forest and range lands are still much too complex for us
to mimic them realistically with models, and numerous key
variables cannot be measured yet in a practical manner.”

�� 0MRI MRXIVWIGX WEQTPMRK

Does the validity of inference for estimators of population
characteristics based on line intersect sampling (LIS) depend
on the random orientation of the population elements? One
is certainly led to believe so from Battles et al. (1996) who
stated: “A basic assumption is that the sampled objects are
randomly oriented with respect to the transects.” Shiver and
Borders (1996, p. 311) gave the same impression: “Note that
one of the assumptions underlying line intersect sampling is
that bolts lying on the ground are randomly oriented. . . . To
avoid problems with nonrandom orientation of bolts, several
transects should be run in different directions.” Many devel-
opments in the theory of LIS have indeed been predicated on
the assumption that population elements, or particles in the
lexicon of LIS, are both located and oriented uniformly at
random in$. However, it is hardly necessary to make such
restrictive assumptions that are almost surely never satisfied
in practice — Kaiser (1983) provided an elegant and thorough
derivation of estimators and their properties “by assuming, as
is done in sampling theory, that the population is fixed and
that randomness enters the problem only through the sampling
scheme.” Failure to recognize the design-based approach in
LIS not only has resulted in unnecessary complications of
sampling design and execution, but also in characterizations
of LIS that are baseless from a design-based perspective.

In the design-based approach, randomness is introduced
via the probabilistic location, and possibly orientation, of the
line transects of common length/. Both the spatial arrange-
ment and shape of the particles (bushes, rocks, grasses, etc.)
in the population are regarded as fixed, along with all di-

mensional and size characteristics associated with them. In
particular, particles need not have a convex shape.

Suppose that a transect has orientation� with respect to
some established baseline, and that its midpoint is located uni-
formly at random within the region$. Kaiser (1983) showed
that the conditional probability of including theNth particle,
say3N, is

3URE�,N  � M ��  ZN���/

$
[9]

where$ is the area of$ andZN��� is the perpendicular dis-
tance between parallel tangents to3N. (If ZN��� is measured
by calipers, the twin arms of the calipers would be oriented
parallel to �; see Fig. 3.) In eq. 9, it is assumed that the
numerator and denominator are scaled to identical units of
measure.

The unconditional inclusion probability of3N is

3URE�,N  ��  (�

�
ZN���

� /
$

[10]

where

(�

�
ZN���

�
 
�

�

=
�

�

ZN��� G�

and where in this context,� is the universal mathematical
constant, not an inclusion probability. Let[N be an auxiliary
variable, whose value may vary among the3N � 8 and may
depend upon the orientation,�, of the line transect. When its
value depends on where3N is intersected,[N is a random
variable.

Again drawing from Kaiser (1983), a conditional estima-
tor of 7\ per unit area, i.e.,�  7\ $, is

E�F  �

$

;
N�8

[N\N,N

(
�
[N,N M �

�
and an unconditional estimator of� is

E�X  �

$

;
N�8

[N\N,N

(�

�
[N,N

�
Example 9

Suppose\N is the area,DN, of 3N projected onto the hor-
izontal plane of$. Thus, � is ground cover expressed as
a proportion, rather than a percentage. By letting[N be the
length of3N coincident with the transect line:

(
�
[N,N M �

�
 (�

�
[N,N

�
 

DN/

$

Thus,

E�F  E�X  �

/

;
N�6

[N

This estimator of cover was demonstrated by Canfield (1941),
although Kaiser (1983) indicated that geologists may have
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Fig. 3. Particle on $ and the maximum distance perpendicular to / that has orientation �.

used it half a century prior to that. The judicious choice of the
auxiliary variate, [N, to be the length of intersection obviates
the need for the direct and more difficult measurement of
projected area, DN, as attempted by Battles et al. (1996). f

The conditional estimator, E�F, is prudent when the sam-
ple is designed with line transects having a fixed, common
orientation. If both the location and the orientation of the
transects are allowed to vary randomly, then the uncondi-
tional estimator, E�X, should be used. Within the design-based
mode of inference, whether the transect orientation is fixed
or random is a design option that need not be considered for
the purpose of countering a lack of randomness of the popu-
lation particles. Especially in view of foresters’ longstanding
familiarity with inventory of systematically planted stands of
trees, a concern that trees or any other aspect of the forest be
randomly placed seems rather odd, and indeed is unnecessary.

A result discussed by Ḿatern (1956) can be used to sim-
plify the unconditional estimator,E�X, in certain situations.
Specifically, when[N  � by design, then(�

�
[N,N

�
equates

to eq. 10. Moreover,(�

�
ZN���

�
 Z�

N
 �, whereZ�

N
is the

girth of the convex hull of3N projected onto the horizontal
plane of$.2 This is an exact result, providing that the ac-
tual girth of 3N can be measured with negligible error. As
an alternative to measuring the girth of3N, a two-stage sam-
pling strategy can be employed, where the methods presented
by Gregoire and Valentine (1995) can be used at the second
stage of sampling to provide a consistent estimate of the girth
of 3N.

2 For this reason, a diameter-tape measurement of diameter at breast height
(DBH) can be regarded as the expected value of a randomly oriented
calipered measurement of DBH.

Example 10

Let [N  \N  � for all 3N � 8 . Thus,7\  1 , and�
is the density,1 $, of particles in$. For a fixed orientation
of the transect line:

E�F  �

/

;
N�6

�

ZN���

whereas for a random orientation

E�X  �

/

;
N�6

�

Z�

N

f

Example 11

Let 3N be theNth road within$, and let\N be its length.
In this situation,� is the number of kilometres of road per
square kilometre. By letting[N be the number of intersec-
tions of the line transect with3N, one can readily estimate�
unconditionally with

E�X  �

�/

;
N�6

[N

This was first deduced by Ḿatern (1964) and later used by
Skidmore and Turner (1992) to assess map accuracy.f

Kaiser (1983) should be consulted for many other special
cases and examples, all of which are derived under the tra-
ditional design-based framework of a fixed population about
which no distributional assumptions are made in order to val-
idate inference.
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Remark 9
The mirage method of Schmid-Haas (1969; also see Gre-

goire 1982) is well known in forest inventory as a means to
avoid design-based bias that otherwise would accrue when
inclusion areas of trees near the stand boundary are truncated
by it. The same method has been adapted to LIS within the
design-based framework by Gregoire and Monkevich (1994).
Other methods of avoiding edge-effect bias exist; see Kaiser
(1983) or Thompson (1992, p. 231).

In wildlife studies, a technique similar to LIS as described
above is prevalent. In this context the particles are animals.
Rather than being selected into the sample when the line
transect actually crosses an animal, an event unlikely to occur
with most live specimens, it is selected and counted when
sighted by an observer traversing the transect. Estimation of
animal abundance or density is based on an assumed detection
function (Seber 1982, pp. 460–471). Because this assumed
detection function affects the reference distribution, inference
about population parameters is model based. Peilou (1985)
distinguished LIS from both line intercept and line transect
sampling. While line transect is used fairly consistently to
indicate the sampling of wildlife populations in the manner
just described, the other two terms are used interchangeably
in the literature of the past few decades.

*M\IH� ERH ZEVMEFPI�VEHMYW TPSX WEQTPMRK

In this penultimate section, I consider the independent
placement of0 sampling locations within the forested region
$. Each location serves as the center of a circular, fixed-
radius plot or of a variable-radius plot, with the understanding
that the same type of plot is established at all0 locations.
Within $ are1 trees that collectively form the population of
interest. TheNth tree will be denoted by7

N

, its biomass by\
N

,
its DBH by G

N

, and the target parameter is7
\

 
3

N�8

\
N

.
At each location, trees are selected into the plot sample

by means of a distance rule used uniformly throughout the
0 locations. Specifically, let=

P

denote the location of the
Pth plot center within$ and let W

NP

denote the distance
separating7

N

from=
P

. Since=
P

is random,W
NP

is a random
variable, also. The distance rule is this:7

N

is selected into the
sample at=

P

if W
NP

� Y
N

, whereY
N

is the limiting distance
of 7

N

, namely

Y
N

 

�!!!�!!!�
5� the plot radius, when using fixed-radius plots

5
N

 £ G
N

�where£ is commonly known as the

plot radius factor (cf. Husch et al. 1982) when

using variable-radius plots

Thus, if the random variable,
NP

indicates whether7
N

is
selected into the sample at location=

P

, then

,
NP

 

�
�� if W

NP

� Y
N

�� otherwise

Let S
N

 3URE
�
,
NP

 �
�
, that evidently coincides with�

N

when P  �. A physical interpretation ofS
N

is possible

which accords with the design-based paradigm that the pop-
ulation is fixed but the sampling location is random:S

N

is
the proportion of the region$ within which a plot can be
located such thatW

NP

� Y
N

. Note thatS
N

is a property of7
N

fixed by the sampling design, not the sampling location=
P

,
and thus, it is not a random variable but a constant. If7

N

is
closer to the edge of$ than Y

N

, S
N

will be less than what
it would be had it been further from the edge thanY

N

. Plots
located near the edge have absolutely no effect onS

N

for all
7
N

� 8 ; see Gregoire (1982) for an elaboration of the cause
of “boundary overlap,” as it is commonly known.

Denote the HT estimator of7
\

from the sample at=
P

by

E7
\�P

 
;
N�8

\
N

,
NP

S
N

which is unbiased and has variance

9
K E7

\�P

L
 
;
N�8

\�
N

�
�� S

N

S
N

�
[11]

�
;;
N � N

�
�8

\
N

\
N

�

�
S
NN

� � S
N

S
N

�

S
N

S
N

�

�
In eq. 11,S

NN

� is the proportion of$ within which a plot can
be located such that bothW

NP

� Y
N

andW
N

�
P

� Y
N

� .
Using the same estimatorE7

\

at each of the0 loca-
tions provides0 independent estimates of7

\

. Moreover,

9
K E7

\�P

L
 9

K E7
\�P

�

L
for all P�P�  �� � � � � 0 , as can

be demonstrated by inspection of eq. 11. For convenience, let

9 represent9
K E7

\�P

L
� P  �� � � � � 0 . Finally, let

H7
\

 0��

0;
P �

E7
\�P

Because theE7
\�P

are independently and identically distributed,
then

9
� H7

\

�
 9 0[12]

While H7
\

may not be immediately recognizable, it is indeed
the usual estimator of inventory. For example, when sam-
pling with fixed-radius plots, if the area of the plot is sig-
nified by D and expressed in the same units as the area A,
then except for those trees close to the edge,S

N

 D $, so
that H7

\

 
�
$ D0

�3
0

P �
<
P

, where<
P

is the aggregate
biomass of trees sampled on thePth plot. The variance ex-
pression eq. 11 has been corroborated by Gregoire and Scott
(1990) using data from a 5.2-ha stand of 4676 trees whose
location and size had been measured. These measurements
enabled eq. 11 to be evaluated exactly. This value was then
compared with the variance of an empirical sampling dis-
tribution comprising estimatesH7

\

from 48 ,000 sample plots
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located uniformly at random on the 5.2-ha region via com-
puter simulation. This variance of the empirical sampling dis-
tribution agreed with that value derived analytically in eq.
11 to within a fraction of a percent for estimators of total
tree frequency, population aggregate basal area, and aggre-
gate volume. A similar verification was undertaken by Nel-
son and Gregoire (1994) for two-stage sampling consisting of
variable-radius plot sampling at the first stage. Here, also, the
analytically derived variance matched the variance observed
from the simulation to within a fraction of a percent.

I use eq. 11 to amplify a point raised in an earlier section.
The spatial distribution of trees affects the joint selection
probabilities S

NN

� . But the variance of E7
\�P

and hence of H7
\

does not and need not account for possible spatial correlation
extant among the tree sizes or other attributes. If the analytical
derivation of eq. 11 seems obscure, then at least the simulation
results, cited above, should help to make this point clear.

A design-unbiased estimator of 9 > H7
\

@  9 0 is ob-
tained as the observed variation among the E7

\�P

� P  �� � � � �
0 :

EY� H7
\

�
 
�
0�0 � ����� 0;

P �

�E7
\�P

� H7
\

�
�

 
�
0�0 � ����� � 0;

P �

E7 �
\�P

�0 H7 �
\

�

The unbiasedness of EY� H7
\

�
as an estimator of 9

� H7
\

�
is

proved in the Appendix.
Eriksson (1995b) favored an infinite population approach

wherein points on the ground are the sampling units. For the
purpose of estimating tree characteristics, the difference be-
tween these alternate views may not lead to any important
distinctions — for example, Eriksson (1995b) arrived at the
same variance estimator as shown above using the superpop-
ulation approach. However, for nontree characteristics, her
approach may have considerable merit.

Yet another view is that of Shiver and Borders (1996)
wherein the population consists of1  $ D plots, from
which Q are selected. If the region$ truly were to be tes-
sellated by1 plots, then this approach might be defensible.
Its appropriateness to current practice is questionable, as$
rarely comprises a set of1 nonoverlapping plots of land.

(MWGYWWMSR

More than a decade ago in this journal, Warren (1986)
exhorted scientists who publish results of statistically fitted
models to state explicitly the model structure and assump-
tions, as well as any apparent deviation of the data from
the assumed model. This paper has been written to plea for
similar explicitness when reporting methods and results from
survey sampling. In particular the mode of inference should
be unequivocally stated and accompanied by a terse descrip-
tion (e.g., Gregoire and Monkevich 1994; Eriksson 1995b)

of the reference distribution used by the authors as the basis
for inference. Lacking such a statement, readers must try to
gather what they can from context, and, as some of the cases
cited here demonstrate, the intended or implied inferential
basis is not always clear from context.

The distinction between using the sampling design versus
an assumed population model has been emphasized above in
order to help dispel the confusion between the two inferen-
tial paradigms. Under the design-based paradigm the refer-
ence distribution is a consequence of the sample design for
a fixed population. Under the model-based paradigm the ref-
erence distribution is a consequence of a presumed model of
population behavior, i.e., a superpopulation, and the sample
design is ancillary to inference. Oscar Garcia (personal cor-
respondence dated 13 April 1998) aptly reminded me that
I have considered model-based inference from a frequentist
perspective only; Bayes and decision-theoretic approaches are
possible, also.

Is one paradigm preferable to the other? The best answer
I have to offer is an equivocal one: it all depends on the
circumstance and the objectives of the survey. In this regard,
the following sentiment from Smith’s (1994) invited address
to the Washington Statistical Society is most apt. Speaking
about the reconciliation of the two modes of inference, Smith
asserted:

All inferences are the product of man’s imagination
and there can be no absolutely correct method of in-
ductive reasoning. . . . My overall conclusion is that
there is no single paradigm for statistical inference
and that we should concentrate on identifying the dif-
ferences and enjoy the diversity of our subject.

I speculate that most of us in applied sciences such as
forestry and ecology share this view and are content with it.
We keep modeling tools in one apron and pull them out when
needed for analytical inference, such as fitting a biomass re-
gression equation by some optimality criterion like maximum
likelihood or least squares. Another apron is kept stocked
with survey tools to deduce characteristics of a specific bio-
logical population. Occasionally we get caught in a quandary
when data from complex survey designs are needed to dis-
cern relationships; the purported growth decline of pines in
the southern United States comes to mind in this regard. To
exploit the strengths of both design-based and model-based
inference, Olsen and Schreuder (1997) are trying ambitiously
to combine elements of both paradigms for the purpose of
establishing cause–effect relationships.

S. Stehman (personal correspondence) touched on the pos-
sible reconciliation of the two approaches when he queried
whether design-based inference can be viewed as model-
based inference for estimators conditioned on the event�,
where

�  
�
<
N

 \
N

� N � 8�
which carries the implication that the;

N

are similary fixed.
I have long thought this to be true, but I say so cautiously. I
have yet to consider all the implications of this viewpoint.
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Some have suggested to me that an appeal to the central
limit theorem to justify confidence intervals in the design-
based mode indicates the assumption of a model, and there-
fore establishes a link between the two inferential paradigms.
I do not argue vehemently against this viewpoint. I do main-
tain, however, that assuming an approximately Gaussian dis-
tribution (model) for the reference distribution is distinctly
different from assuming distributional characteristics of the
population, which in turn establishes the reference distribu-
tion. That distinction serously weakens the link in my view,
as it is the distributional assumptions about the population
that are the essence of model-based inference.

An important point made in various ways throughout
this article is that an estimator may be biased (unbiased) in
the design-based framework while unbiased (biased) in the
model-based framework. Some find this result paradoxical,
yet in my view, it serves usefully to emphasize that the two
paradigms appeal to different reference distributions for infer-
ence. Irrespective of which inferential framework is used, the
effect of measurement error can be pernicious: in my experi-
ence, measurement error rarely is random, and its presence,
and the subsequent bias that it may impart, often is blithely
ignored.

All but one of the many presubmission reviewers of this
manuscript reported that it had helped them to appreciate the
difference between design-based and model-based inference
more clearly. More than one also indicated lingering uncer-
tainty on various issues. Therefore, I close with some sugges-
tions for further reading that may help to clarify and expand
upon selected issues raised above.

While I have already cited many of the authoritative ref-
erences on the basis of inference, as well as the design-
based/model-based duality, there is an abundant literature not
mentioned. I highly recommend the discussion sections fol-
lowing Basu (1978), Royall and Cumberland (1981, 1985),
Hansen et al. (1983), and Brewer (1994). I have found them
to be very provocative and instrumental in cementing my own
views on the matter, and the last named reference provides
an especially insightful account of dilemmas faced by propo-
nents in both camps. Koch and Gillings (1982) have a brief
but illuminating encyclopedia entry on statistical inference
that specifically contrasts the reference distributions implicit
to the two modes of inference discussed here. Kish (1987)
explores the multiple meanings of the word “representative,”
giving due recognition to the superb series of articles by
Kruskal and Mosteller (1979a, 1979b, 1979c, 1980) devoted
to the subject. In chapter 1, Kish eschews the model-based
approach in favor of the “population bound” (design-based)
approach, mainly because he associates the former with an
abandonment of probabilistic selection. While the two are
not necessarily linked in my view, his perspective makes for
thoughtful reading. Thompson (1992) has a brief and straight-
forward discussion of the advantages offered by design-based
and model-based approaches in various settings and for vari-
ous survey objectives. Thompson (1997, chap. 5) writes at a
more challenging level as she considers superpopulation in-

ference and the related issues of likelihood, conditioning, and
exchangeability.

Closely tied to the model-assisted approach to sampling
and inference is the notion of asymptotic design unbiased-
ness (ADU). S̈arndal (1980) makes an eloquent case of ADU
estimators.

Sampling and estimation for continuously distributed pop-
ulations have received much recent attention, perhaps as a
result of the rapid development and prominence of statisti-
cal methods for the analysis of spatial data. Yet, continuous
populations have been a focus of concern in the literature
of systematic sampling dating back at least to Jones (1948).
Bartlett (1986) considers a superpopulation approach to esti-
mating the population total of a continuous population, and he
makes an illuminating connection to the geostatistical tech-
nique of kriging. McArthur (1987) undertakes a simulation
study of various sampling strategies to estimate the average
level of response surface of a pollutant; he recommendes both
stratified random sampling and importance sampling as the
most precise of those he considered. Cordy (1993) provid-
edsthe theory for HT estimation of parameters of a fixed,
continuous population based on spatial probability sampling.
An important paper both for its readability and its breadth of
coverage of issues relating to spatial sampling of the envi-
ronment is that of Cox et al. (1997).
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