
3 Pr inc ip les o f Probabi l i t y

3.1 Why Bother with First Principles?

Progress in science is made by comparing predictions of models with
observations. All models make imperfect predictions of the operation of
nature. A crosscutting theme in this book is that statistics help us solve
the essential problem of science: gaining insight about phenomena of high
dimension by the judicious reduction of their dimensions. Models reduce
manifold influences on ecological processes to a few that can be understood.
This means that models are inherently, deliberately approximate by virtue
of the dimensions omitted.
To make a proper comparison between a model and observations,

we need to understand the approximation inherent in models in terms
of uncertainty. The output of the deterministic models we discussed in
section 2.2 is a scalar or a vector; that is, for any given set of parameter
values and input the model returns exactly the same result. In contrast, the
output of a stochastic model is one or more probability distributions that
reflect the uncertainty inherent in our model’s predictions of a state and the
way we observe it.
We use the term stochastic to refer to things that are uncertain.1 Sto-

chasticity arises in models in different ways, with different implications for
sampling, experimental design, and forecasting. We mentioned these dif-
ferent sources of uncertainty earlier and will bring them up again and again.

1Stochastic models are used in the theoretical modeling tradition to represent random variation
occurring over time and space not described by the deterministic core of the model. These models
are often analyzed without reference to any data. We will not deal with these kinds of models, but
we acknowledge that they are stochastic.
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The main sources are the following:

1. Process variance: Process variance includes the uncertainty that
results because our model fails to represent all the forces causing
variation in the ecological quanties we seek to understand. Good
models have low process variance because they capture most of the
variation in the state they predict. Poor models have high process
variance because they can’t explain that variation. We often use
the process variance to evaluate the fidelity of our model to the
processes it represents, which means that it is critical to separate
process variance from other sources of uncertainty. Failing to do so
may lead to false conclusions about the model—we may have a great
model and a poor system for observing the quantities it predicts.
Lumping uncertainty about the process with uncertainty about the
observations into the same “error term” makes it difficult to evaluate
models and can lead to erroneous conclusions about the operation
of ecological processes (Dennis et al., 2006; Hefley et al., 2013;
Ahrestani et al., 2013).2 The only way to reduce process variance is
to improve our model. Expending more effort to observe the state
of interest, improving our instruments, increasing our replications,
and expanding the area we sample will do nothing to change process
variance.

2. Observation variance: We rarely observe perfectly what we seek
to understand. Observation variance quantifies these imperfections.
There are usually two causes of observation variance. We seek to
understand the true state of large areas or many individuals or many
points in time, but we are forced by practicality to observe only a
sample of them. Our sample is never a perfect reflection of the true
state. In addition, we may need to correct our observing system for
bias, and that correction is itself uncertain. In both cases, we can
reduce uncertainty by taking more observations. Sampling variance
asymptotically approaches zero as the number of observations in-
creases. Models correcting for bias in our observations also become
more certain with more observations.

3. Variation among individuals: Individual organisms differ because of
their genetics and their individual histories—characteristics that may
be hidden to us. These individual differences create uncertainty when
we seek to understand responses of individuals to treatments or to

2Sometimes, particularly when designs are unreplicated, this separation is not possible, and
lumping process and observation variance may be the best we can do. Section 6.3 covers this in
detail.
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environmental variation. The same idea can apply to spatial locations,
which also have unique attributes.

4. Model selection uncertainty: The inferences we make based on a
model depend on the model we choose from among many possible
alternatives. The uncertainty that arises from our particular choice
is called model selection uncertainty. We believe that the scientific
objectives for the model trump formal model selection procedures, so
our view is that sometimes we can ignore model selection uncertainty
altogether, at other times we must quantify the uncertainty associated
with using one model over another.

Dealing with uncertainty requires the proper tools, and primary among them
are the rules of probability and an understanding of probability distributions.
Equipped with these, ecologists can analyze the particular research problem
at hand regardless of its idiosyncrasies. These analyses extend logically
from first principles rather than from a particular statistical recipe. In the
sections that follow, we describe these principles. Our approach is to start
with the definition of probability and develop a logical progression of
concepts extending from it to a fully specified and implemented Bayesian
analysis appropriate for a broad range of research problems in ecology.

3.2 Rules of Probability

Ecological research requires learning about quantities that are unobserved
from quantities that are observed. Any quantity that we fail to observe,
including quantities that are observed imperfectly, involves uncertainty.
The Bayesian approach treats all unobserved quantities as random variables
to capture that uncertainty. A random variable is a quantity that can take on
values due to chance—it does not have a single value but instead can take
on a range of values. The chance of each value is governed by a probability
distribution. We cannot underestimate the importance of this concept.
Bayesian analysis is the only branch of statistics that treats all unobserved
quantities as random variables. We will return to this idea in chapter 5.
All random variables have probability distributions even though these

distributions may be unknown to us. The rules of probability determine
how we gain insight about random variables from the distributions that
govern their behavior. Understanding these rules lays a foundation for
the remainder of the book. This material is not exactly gripping, but we
urge you not to skip this section or rush through it unless you are already
well grounded in formal principles of probability. Understanding these
principles will serve you well.
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Figure 3.2.1. Illustration of conditional, independent, and disjoint probabilities. The
area S defines a sample space including all the possible outcomes of a sample or an
experiment. There are two sets of realized outcomes, A and B. The area of each event
is proportional to the size of the set. The probability of A = area of A/area of S and
the probability of B = area of B/area of S. Knowledge that event A has occurred
influences our assessment of the probability of B when the intersection of the two
events gives us new information about the probability of B. In this case, the probability
of B is conditional on A, and vice versa (upper panel). In other cases the events
intersect, but there is no new information. In this case the probability of B given A is
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We start with the idea of a sample space, S, consisting of a set of all
possible outcomes of an experiment or a sample, shown graphically as a
polygon with a specific area (fig. 3.2.1). One of the possible outcomes of the
experiment or sample is the random variable, “event A,” a set of outcomes,
which we also depict as a polygon (fig. 3.2.1). The area of A is less than the
area of S because it does not include all possible outcomes. The area of A
is proportional to the size of the set of outcomes it does include. It follows
that the probability of A is simply the area of A divided by the area of S.
We now introduce a second event B to illustrate the concept of con-

ditional, independent, and disjoint probabilities—concepts critical to un-
derstanding and applying Bayes’ theorem to ecological models (chapters 5
and 6) Consider the case when we know that the polygon defining event B
intersects the A polygon (fig. 3.2.1 upper panel) and, moreover, we know
that event A has occurred. We ask, What is the probability of the new event
B given our knowledge of the occurrence of A? The knowledge that A has
occurred does two things: It shrinks the sample space from all of S to the
area of A—if we know A has occurred, we know that everything outside of
A has not occurred, so in essence we have a new, smaller space for defining
the probability of A. Knowing that A has happened also affects what we
know about B—we know that everything within B outside of A has not
occurred (fig. 3.2.1). This means that

Pr(B|A) = area shared by A and B

area of A
. (3.2.1)

Dividing the numerator and denominator of the right-hand side by S we turn
the areas into probabilities:3

Pr(B|A) = Pr(A ∩ B)

Pr(A)
= Pr(A, B)

Pr(A)
. (3.2.2)

3The set operator ∩ means “intersection of.”

Figure 3.2.1 (Continued).
the same as the probability of B, because area of B shared with A/area of A = area of
B/area of S. In this case, we say that A and B are independent (middle panel, areas
drawn approximately, but you really can’t tell if one event is conditional on another by
simply looking at the diagram unless you can see proportionality perfectly! If there is
no intersection, then the events are disjoint. Knowing that A has occurred means that
we know that B has not occurred (bottom panel). Thus, disjoint probabilities are a
special case of conditional probability where Pr(A|B) = 0.
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Using the same logic, we obtain

Pr(A|B) = area shared by A and B

area of B
= Pr(A ∩ B)

Pr(B)
= Pr(A, B)

Pr(B)
. (3.2.3)

The expression Pr(A|B) reads, “the probability of A conditional on knowing
B has occurred.” The bar symbol (i.e., |) reads “conditional on” or “given,”
expressing the dependence of event A on event B; if we know B, our
knowledge changes what we know about A. It is important to note that
Pr(A|B) �= Pr(B|A). The expression Pr(A, B) reads, “the joint probability
of A and B” and is interpreted as the probability that both events occur. We
will make important use of the algebraic rearrangement of equations 3.2.2
and 3.2.3 to expand their joint probability,

Pr(A, B) = Pr(B|A) Pr(A) (3.2.4)

= Pr(A|B) Pr(B).

In some cases the area defining the two events overlaps, but no new
information results from knowing that either event has occurred (fig. 3.2.1
middle panel). In this case the events are independent. Events A and B are
independent if and only if

Pr(A|B) = area of A shared by A and B

area of B
= area of A

area of S
= Pr(A), (3.2.5)

or equivalently,

Pr(B|A) = Pr(B). (3.2.6)

Using equations 3.2.1 and 3.2.3, we can substitute for the conditional
expressions in equations 3.2.5 and 3.2.6. A little rearrangement gives us
the joint probability of independent events:

Pr(A, B) = Pr(A|B) Pr(B) = Pr(A) Pr(B). (3.2.7)

It is important to throughly understand the difference between the joint
probability of events that are independent (eq. 3.2.7) and those that are
not (eq. 3.2.4). When events are disjoint, there is no overlap between them
(fig. 3.2.1 lower panel). In this case, knowing that one event has occurred
means that we know the other event has not occurred. Thus, events that
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Principles of Probability • 35

are disjoint are a special case of conditional probability: knowledge of one
event gives us complete knowledge of the other event.
We may also be interested in the probability that one event or the other

occurs (fig. 3.2.1), which is the total area of A and B not including the area
they share4, that is,

Pr(A ∪ B) = Pr(A) + Pr(B) − Pr(A, B). (3.2.8)

When A is independent of B,

Pr(A ∪ B) = Pr(A) + Pr(B) − Pr(A) Pr(B), (3.2.9)

but if the events are conditional,

Pr(A ∪ B) = Pr(A) + Pr(B) − Pr(A|B) Pr(B), (3.2.10)

or equivalently,

Pr(A ∪ B) = Pr(A) + Pr(B) − Pr(B|A) Pr(A). (3.2.11)

If A and B are disjoint, then

Pr(A ∪ B) = Pr(A) + Pr(B), (3.2.12)

which is simply a special case of equation 3.2.8 where Pr(A, B) = 0.
The final probability rule we consider applies when we can partition the

sample space into several nonoverlapping events (fig. 3.2.2). This rule is im-
portant because we will use it later to understand the components of Bayes’
theorem (chapter 5). We define a set of events {Bn : n = 1, 2, 3, . . .}, which
taken together, cover the entire sample space,

∑
n Bn = S. We are interested

in the event A that overlaps one or more of the Bn . The probability of A is

Pr(A) =
∑

n

Pr(A | Bn) Pr(Bn). (3.2.13)

4The ∪ operator means “union of.”
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Figure 3.2.2. Illustration of the law of total probability.

Equation 3.2.13 is called the law of total probability. As the number of
events approaches infinity and the areas of events become infinitesimally
small, equation 3.2.13 becomes5

Pr(A) =
∫

[A|B] [B] d B. (3.2.14)

3.3 Factoring Joint Probabilities

It is hard to avoid a modicum of tedium in describing the rules of
probability, but there is a very practical reason for understanding them:
they allow us to deal with complexity. These rules permit us to take
complicated joint distributions of random variables and break them down
into manageable chunks that can be analyzed one at a time as if all the other
random variables were known and constant. The importance of this idea
and its implementation will be developed throughout the book, particularly
in chapters 6 and 7. Here, we establish its graphical and mathematical
foundation. What you learn here is critical to the model specification step in
the general modeling process we described in the preface (fig. 0.0.1B). The
material will become clear as we apply it to modeling problems.

5A bit about integral notation is needed here. Ecologists with some training in calculus likely
recognize the definite integral

∫ U
L [A|B] [B]d B as the area under the curve [A|B][B] from L to

U . When no interval is specified (the
∫

is “naked”), we denote integration over the domain of
the function [A|B][B]. Thus, the notation ∫ [A|B][B]d B means the definite integral of [A|B] [B]
over all possible values of B, the prevailing convention in statistics. It is important not to confuse
this convention with that often used in mathematics where

∫
[A|B][B]d B denotes the indefinite

integral, that is, the antiderivative of [A|B][B].
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Consider the networks shown in figure 3.3.1. A Bayesian network
(also called a directed acyclic graph) depicts dependencies among random
variables. The random variables in the network are called nodes. The
nodes at the head of the arrows are charmingly called children, and the
tails, parents. Bayesian networks show how we factor the joint probability
distribution of random variables into a series of conditional distributions
and thereby represent an application of equation 3.2.4 to multiple variables
(fig. 3.3.1). We use factoring to simplify problems that would otherwise be
intractably complex.
Bayesian networks are great tools for thinking about relationships in ecol-

ogy and for communicating them (e.g., fig. 1.2.1). They are useful because
they allow us to visualize a complex set of relationships, thus encouraging
careful consideration of how knowledge of one random variable informs
us about the behavior of others. They lay plain our assumptions about
dependence and independence. A properly constructed Bayesian network
provides a detailed blueprint for writing a joint distribution as a series of
conditional distributions: nodes at the heads of arrows are on the left-hand
side of conditioning symbols, those at the tails of arrows are on on the
right-hand side of conditioning symbols, and any node at the tail of an
arrow without an arrow leading into it must be expressed unconditionally,
for example, Pr(A). The network provides a graphical description of
relationships that is perhaps easier to understand than the corresponding
mathematical description, facilitating communication of ecological ideas
underlying the network.6

The mathematics allowing factoring of joint distributions extends directly
from the rules of probability we have already developed. Given the vector of
jointly distributed random variables z = (z1, . . . , zn)′, the joint probability
of the variables satisfies

Pr(z1, . . . , zn|p1, . . . , pn) =
n∏

i=1

Pr(zi |{pi }), (3.3.1)

where {pi } is the set of parents of node zi , and all the terms in the product
are independent.7 Independence of the terms in equation 3.3.1 is assured if
the equation has been properly constructed from a Bayesian network, and
the network shows relationships that are conditional and independent.

6At least Hobbs thinks so. Hooten prefers the equations.
7The operator

∏n

i=1
says take the product of everything with the subscript i over i = 1, . . . , n.

It is the multiplicative equivalent of the summation operator,
∑n

i=1
, which may be more familiar

to ecologists.
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Figure 3.3.1. Bayesian networks specify how joint distributions are factored into
conditional distributions using nodes to represent random variables and arrows to
represent dependencies among them. Nodes at the heads of arrows must be on the
left-hand side of conditioning symbols (|); nodes at the tails of arrows are on on the
right-hand sides of conditioning symbols. Any node at the tail of an arrow without an
arrow leading into it must be expressed unconditionally, for example, Pr(A). Some of
the examples also indicate independence. The random variables A and B are
independent after accounting for their mutual dependence on C in graphs III and IV; D
and E are independent in IV, and B is independent of C and D in VI.
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A somewhat more formal way to say the same thing is to generalize
the conditioning rule of probability for two random variables (eq. 3.2.3)
to factor the joint distribution of any number of random variables using

Pr(z1,z2, . . . , zn) = Pr(zn|zn−1, . . ., z1) . . . Pr(z3|z2, z1) Pr(z2|z1) Pr(z1),
(3.3.2)

where the components zi may be scalars or subvectors of z, and the
sequence of the conditioning is arbitrary.8 It is important to see the pattern
of conditioning in equation 3.3.2. We can use the independence rule of
probability (eq. 3.2.5) to simplify conditional expressions in equation 3.3.2
for random variables known to be independent. For example, if z1 is
independent of z2, then Pr(z1|z2) simplifies to Pr(z1). If z1 and z2 depend
on z3 but not on each other—which is to say they are conditionally
independent—then

Pr(z1,z2, z3) = Pr(z1|z2,z3) Pr(z2|z3) Pr(z3) (3.3.3)

simplifies to

Pr(z1,z2, z3) = Pr(z1|z3) Pr(z2|z3) Pr(z3). (3.3.4)

Another example of this kind of simplification is shown graphically and
algebraically in figure 3.3.1 V and VI. Don’t let the formalism in this
paragraph put you off. It is simply a compact way to say what we
have already shown graphically using Bayesian networks, which for many
ecologists will be more transparent.

3.4 Probability Distributions

3.4.1 Mathematical Foundation
The Bayesian approach to learning from data using models makes a
fundamental simplifying assumption: we can divide the world into things
that are observed and things that are unobserved. Distinguishing between
the observable and unobservable is the starting point for all analyses.

8We say the sequence is arbitrary to communicate the idea that the ordering of the specific zi is
not required for equation 3.3.2 to be true. In other words, zn doesn’t need to come first. However,
the word arbitrary should not be taken to mean capricious. As we will learn, it is our understanding
of the biology that determines what is conditional on what and ultimately governs the sequence of
conditioning.
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We treat all unobserved quantities as random variables governed by prob-
ability distributions, because the things we cannot observe have inherent
uncertainty. It follows that understanding probability distributions forms
a critical link between models and data in ecology. Becoming familiar
with these distributions is the key to developing a flexible approach to
the analysis of ecological models and data. Equipped with a toolbox of
deterministic models (Otto and Day, 2007, chap. 2; Bolker, 2008) and
the probability models described here, you will be able to thoughtfully
develop a coherent approach to analyzing virtually any problem in research,
regardless of its nuances. At the very least, you will be able to compose an
approach that can be discussed productively with your statistical colleagues.
In this section we provide a compact description of distributions com-

monly used in developing models for ecological data. We first describe
the features shared by all probability distributions and then outline features
of specific distributions that we will use frequently in later chapters. We
organize this section using the two types of random variables, discrete and
continuous. Discrete random variables are those that take on discrete values,
usually integers. It is possible, however, for discrete random variables to
take on non-integer values. For example, a random variable might have
support {0, 12 , 1}. In this case it is discrete but not integer-valued. All
discrete random variables in this book will be integers, usually counts
of things or membership in categories. In contrast, continuous random
variables can take on an infinite number of values on any interval to
represent length, mass, time, and energy, for example.
Probability mass functions and probability density functions are the

fundamental link between models of ecological processes and observations
of those processes. We first explain probability mass functions, then turn to
probability density functions.

3.4.1.1 Probability Mass Functions
Assume we are interested in a discrete random variable z. That random
variable might be the number of zooplankton in a 1L sample from a lake.
The quantity z = 304 is a specific value that might be observed for that
sample. The random variable could also be the number of individual plants
in four categories: native annuals, native perennials, exotic annuals, and
exotic perennials, for example, z = (4, 6, 18, 3)′.9 These examples illustrate
an important point that we will return to more than once. Before we observe
a quantity like the number of zooplankton in a sample, the quantity is
a random variable whose value is governed by a probability distribution.

9We will use notation u =(a, b, c)′ to indicate the vector u with elements a, b and c. The (′)
following the () indicates that the variables within the parentheses are elements of a column vector.
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Figure 3.4.1. (A) A probability mass function computes the probability that a discrete
random variable takes on a single value. Shown here is the distribution of a Poisson
random variable with mean = 10. (B) A probability density function computes the
probability density of a continuous random variable at a point. The integral of the
function between two points gives the probability that the random variable falls in the
interval between the points. Shown here is the distribution of a gamma random
variable with mean = 5 and variance = 9.

After it is observed, the quantity becomes a known, specific value.
A probability mass function,10 [z], for the random variable is

[z] = Pr(z), (3.4.1)

which simply says that given the argument z, the function [z] returns the
probability that the random variable will take on the particular value z
(fig. 3.4.1, box 3.4).
All probability mass functions share two properties:

0 ≤ [z] ≤ 1, (3.4.2)
∑

z∈S[z] = 1, (3.4.3)

where S is the support of the random variable z, that is, the set of all
values of z for which [z] > 0. Support is a vital concept because it defines
the domain of the function [z]; values of z outside that domain have zero
probability of occurrence and in some cases are not defined. Equation 3.4.2
says that the value of [z] must be between 0 and 1, which of course makes
sense if [z] is a probability. Equation 3.4.3 says that the sum of [z] over all
its possible values must equal 1, which, is again, sensible for a probability
mass function.

10Some statisticians use probability function synonymously with probability mass function.
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Box 3.4 Notation for Probability Distributions

Statisticians read and write notation every day, allowing them to become
accustomed to differences in notational styles that frequently occur in the
literature. However, these differences can be confusing for ecologists who don’t
use notation as frequently as statisticians do. Here we explain the notation we
will use to represent probability distributions and show how it relates to other
widely used notations that mean the same thing.

Our Notation
First introduced in the seminal paper of Gelfand and Smith (1990), brackets
have become a preferred notation for ecologists and statisticians using Bayesian
methods, because they allow complex, multidimensional models to be written in
compact form. We will use the notation [z] to mean the probability of the random
variable z if z is discrete and the probability density of z if z is continuous. Thus,
[z] denotes “z is distributed as.” We will not include additional arguments within
brackets when we refer to probability distributions broadly defined. If we are
writing about specific distributions and want to refer to parameters, we will use
[z|α, β] to denote the probability or probability density of z conditional on α
and β.

We will often name the specific distribution; for example, we will write
gamma (z|α, β) to denote that the random variable z follows a gamma distrib-
ution with parameters α and β. We will use z ∼ gamma (α, β) to mean the same
thing. When we refer specifically to the probability of z (excluding probability
density) we will use the notation Pr(z).

We will unapologetically use somewhat unconventional notation to achieve
clarity when we want to specifically delineate the deterministic and stochastic
components of models. So, for example, we might be interested in a deterministic
model µi ≡ g(θ , xi ) that predicts the central tendency of the distribution of the
random variable yi , that is, [yi |µi , σ

2], where σ 2 is a parameter that controls
the dispersion of the distribution. (See chapter 1 for examples.) Equivalently, we
will often use

[
yi |g (θ , xi ) , σ 2

]
. Of course, we realize that not all distributions

have means and variances as parameters, so this notation runs some risk of being
confused with the normal distribution when we intend it to refer to the full family
of probability distributions. However, we have found in our teaching that it can be
very helpful to call specific attention to the deterministic part and the stochastic

(continued)
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(Box 3.4 continued)

part of models. We will reemphasize this point to prevent confusion with the
normal distribution throughout the book. Moreover, we will teach how quantities
representing central tendency and dispersion can be properly matched to specific
parameters of distributions in section 3.4.4.

Notation Used by Others
Bracket notation for distributions is synonymous with the following. Often,
mathematical statistics texts use the notation P(Z = z) = f (z) or P(Z = z) =
fZ (z) to mean the probability that random variable Z takes on a specific value z
is given by the probability mass function f (z). So, P(Z = z) = f (z) is the same
as [z]. Sometimes, authors reserve p(Z = z) to refer to probability density, and
Pr(Z = z) to refer to probability. Similarly, the notation P(z|α, β) means the
same thing as [z|α, β], which is identical with f (z|α, β) and f (α, β) when f has
been defined as a probability mass function or probability density function for z.
We prefer the bracket notation because it is simpler.

Statisticians often write probability mass functions and probability density
functions with only two arguments, the parameters, without specifying the
random variable. For example they might write the distribution of the random
variable z as gamma (α, β). To err on the side of clarity, we will include the
random variable, that is, gamma(z|α, β).

3.4.1.2 Probability Density Functions
Probability density functions apply to random variables that are continu-
ous, taking on values that are real numbers instead of integers. Given a
continuous random variable z, a probability density function [z] has the
characteristics

[z] ≥ 0, (3.4.4)

Pr(a ≤ z ≤ b) =
b∫

a

[z] dz, (3.4.5)

∞∫

−∞
[z] dz = 1 , (3.4.6)
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which says that the probability density of z is nonnegative, that the
probability of z falling between a and b is the integral of the density function
from a to b, and that the integral of the density function over all real
numbers equals 1.
It is important to understand that probability density functions do not

return a probability, as probability mass functions do. Instead, they return a
probability density. For continuous random variables, probability is defined
only for a range of values, that is, Pr(a ≤ z ≤ b). The support for
a continuous random variable includes all the values of z for which the
probability density exceeds 0; that is, [z]> 0.
Some intuition for probability density can be gained by thinking about

how we would approximate an integral of a probability density function
[z] over some range �z = b − a using a rectangular column with height
[(a+b)/2] and width�z, remembering that the brackets indicate a function
that returns the probability density of whatever is enclosed within them
(fig. 3.4.2). Thus, we can think of [(a + b)/2] as the average height of a
bar over the interval from a to b. The probability of z over the interval a
to b is Pr(a ≤ z ≤ b) ≈ �z[(a + b)/2]. Thus, for very small �z, the
probability density of z is [z] ≈ Pr(a ≤ z ≤ b)/�z.
We have found in our teaching that a potential point of confusion for

many ecologists is that the y-axis for plots of probability mass functions
always ranges between 0 and 1, while the y-axis for probability density
functions can take on any value greater than 0. Students often ask, “How can
the area under the probability density curve equal 1 if there are values on
the y-axis that are greater than 1? Why is the axis so different for different
random variables?” These questions arise from forgetting the definition of
a definite integral, an easy thing to do for those of us who may use integrals
infrequently. Recall that when we integrate, we are summing the area of
bars (their heights × widths) under a curve where the number of bars
approaches infinity, and the width of bars approaches zero. Thinking of
integrals as the sum of the areas of many bars is the key to understanding
the values on the y-axis of probability density functions (fig. 3.4.2, inset).
The area depends on the height of the bars and the widths, which means
that the scale of the y-axis of a probability density function depends on
the scale of the x-axis. Any nonnegative value can appear on the y-axis
for probability density, because those densities depend on the values of the
random variable on the x-axis. This must be true to ensure that the integral
over the entire support of x equals 1.

3.4.1.3Moments
Important properties of probability distributions can be summarized suc-
cinctly using their moments. The first moment describes the central ten-
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Figure 3.4.2. Illustration of probability and probability density for continuous random
variables. When random variables are continuous, probability is defined only for
intervals of values of the random variable. For example, the probability that the
random variable z is within the interval a to b is the area of the shaded region,
Pr(a ≤ z ≤ b) = ∫ b

a [z]dz. Probability density is the height of the shaded area at zero
width, that is, [z] = Pr(a ≤ z ≤ b)/�z with �z infinitesimally small. Recall that as
�z approaches zero, �z becomes dz in

∫ b
a [z]dz. The inset demonstrates that the

probability density, unlike probability can be greater than 1.

dency of the distribution, and the second central moment describes the
dispersion or spread of the distribution. For the discrete random variable
z, the first moment is the expected value of z, that is, the mean of its
distribution:

µ = E(z) =
∑
z∈S

z[z]. (3.4.7)

Equation 3.4.7 says the expected value of the random variable z is the
sum of all possible values of z, each multiplied by its probability. Thus,
the expected value is a weighted average of values of the random variable,
where the weights are probabilities, [z]. The second central moment of the
distribution of discrete random variables, the variance, is the expected value
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of the squared difference between the value of the random variable and the
mean of the random variable

σ 2 = E
(
(z − µ)2

)
=
∑
z∈S

(z − µ)2 [z] . (3.4.8)

For continuous random variables, we integrate rather than sum to obtain
the moments:

µ = E (z) =
∫ ∞

−∞
z[z]dz; (3.4.9)

σ 2 = E
(
(z − µ)2

)
=
∫ ∞

−∞
(z − µ)2[z]dz. (3.4.10)

There are additional moments; skewness is the third, and kurtosis is the
fourth, but we will not use them in the material that follows.
It is important to know howwe approximate the first and second moments

of random variables, continuous or discrete, using a technique calledMonte
Carlo integration. If we make many random draws from the distribution
[z], then its mean is approximately

µ = E(z) ≈ 1

n

n∑
i=1

zi , (3.4.11)

where n is the number of draws, and zi is the i th value of the draw11 of
random variable z. In a similar way we can approximate the variance as12

σ 2 = E
(
(z − µ)2

)
≈ 1

n

n∑
i=1

(zi − µ)2, (3.4.12)

where µ is estimated using equation 3.4.11. It is important to understand
these approximations, because random draws from a distribution form the
fundamental basis for learning about distributions of parameters and latent

11The idea of making draws from a distribution to approximate its mean or other moments
will be very important in subsequent chapters, particularly 7 and 8. Be sure you understand this
concept.

12Don’t confuse this formula with the variance of a small sample in frequentist statistics, which
you may remember as σ 2 ≈ 1

n−1

∑n
i=1 (zi − z̄)2, using 1/(n −1) instead of 1/n. The version with

n in the denominator provides the maximum likelihood estimate of σ 2, an estimate that is biased.
An unbiased estimate for a small sample is obtained using 1/(n − 1). However, in sampling from
a distribution, we make so many draws (n) that using 1/(n − 1) versus 1/n has no practical effect
on the estimate of the variance.
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Figure 3.4.3. Cumulative distribution functions calculate the probability that a
random variable takes on values less than or equal to a threshold, F(z) = Pr(u ≤ z).
Shown here are cumulative distribution functions for a Poisson random variable (A)
with mean = 10 and a gamma random variable (B) with mean = 5 and variance = 9.
Both functions asymptotically approach 1 as u approaches infinity. Corresponding
probability mass and probability density functions are shown in figure 3.4.1.

quantities as well as quantities derived from them using Markov chain
Monte Carlo, which we will treat in detail in chapters 7 and 8.

3.4.1.4 Distribution and Quantile Functions
We often wish to know the probability that a random variable takes on
values above or below some threshold, for example, the probability that
a population falls below 1000 individuals or that the proportion of plots
containing a rare species exceeds 0.10. We do this by using the cumulative
distribution function F(z) for a discrete random variable13 (fig. 3.4.3 A),
which is defined as the probability that the value of the random variable is
at most z:

F(z) =
∑
u≤z

[u]. (3.4.13)

Given an argument z, the cumulative distribution function returns the
probability that the random variable u is less than or equal to z, where
�u≤z [u] is the sum of all the probabilities of u for values of u less than
or equal to z. For continuous random variables, the cumulative distribution

13Also called the distribution function.
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function (fig. 3.4.3 B) is

F(z) =
∫ z

−∞
[u] du. (3.4.14)

The cumulative distribution function for a continuous random variable
is the integral of the probability density function. It follows from the
fundamental theorem of calculus that the density function is the derivative
of the distribution function.
Finally, we introduce the quantile function, F−1(p), which we will often

use for interval estimation of unobserved quantities. For a discrete random
variable the quantile function returns the largest value of z for which
F(z) ≤ p, where p is the quantile of interest. For a continuous random
variable, the quantile function is the inverse of the cumulative distribution
function, F−1(p) = z.

3.4.2 Marginal Distributions
Marginal distributions of random variables arise in many contexts in
Bayesian modeling, so it is important to understand what they are. We start
with the simplest case, two discrete random variables, x and y, that are
jointly distributed:

[x, y] ≡ Pr(x, y), (3.4.15)

which simply means that [x, y] is defined as (≡) the probability of the joint
occurrence of x and y. The marginal distributions of x and y are most
easily understood by example. Imagine that we are interested in a species
for which births occur in pulses. We observe 100 females and record the age
of each individual (as an integer) and also record the number of offspring
she produced. We divide the frequency of each observed age and offspring
combination by 100 to obtain the joint probabilities (see table 3.1). Cells in
the table give the joint probability of age and number of offspring. The
bottom row gives the marginal distribution of the number of offspring.
The rightmost column gives the marginal distribution of age. Thus, y is
“marginalized out” by summing to obtain the marginal distribution of y.
The same idea applies to summing over x .
For a joint distribution of two random variables, we can focus on the

probability of occurrence of one of them by summing over the probabilities
of the other, effectively turning a bivariate distribution into a univariate
one. If we are interested in the probability distribution of the number of
offspring irrespective of the age of the mother, we ignore age by summing
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TABLE 3.1
Example of Joint and Marginal Distributions for Age (x) and Number of Offspring (y)

y = Number of Offspring
x = Age 1 2 3

∑
y

[
x, y
]

1 0.1 0 0 0.1
2 0.13 0.12 0.02 0.27
3 0.23 0.36 0.04 0.63∑

x [x, y] 0.46 0.48 0.06

down the columns in table 3.1 to obtain themarginal distribution of number
of offspring. It is easy to see why this distribution is called marginal—it is
based on the sums listed in the margins of the table. Thus, the marginal
distribution of x is

[x] =
∑

y

[x, y]

=
∑

y

[x |y][y] ,

and the marginal distribution of y

[y] =
∑

x

[x, y]

=
∑

x

[y|x][x] ,

results that follow directly from the law of total probability (eq. 3.2.14). It
is important to note that these are true probability distributions:

∑
x [x] = 1,

and
∑

y[y] = 1.
Now, imagine that we add a third dimension to the data, sex of offspring,

z, so that the joint distribution is now [x, y, z], and the matrix of data
in table 3.1 becomes a 3 × 3 × 2 array. If we were interested in the
probability distribution of male versus female offspring, we would sum over
the probabilities of number of offspring and age, [z] = ∑

x

∑
y[x, y, z]. We

could add any number of dimensions to the joint distribution and would
follow the same procedure to focus on one of them. We sum over the
probabilities of all the random variables except the one we are interested in.
We obtain the distribution of the variables of interest by “marginalizing”
over the distribution of the variables being discarded. The variables we
leave out are said to have been “marginalized out.”
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We now consider random variables that are continuous rather than
discrete (fig. 3.4.4). For example, we might be interested in the joint
distribution of the mass of the mother, x , and the total mass of its offspring,
y. When the joint random variables are continuous,

[x] =
∫
[x, y]dy

=
∫
[x |y][y]dy, (3.4.16)

where
∫
[x |y][y]dy is the integral of [x |y][y] over the support of y.

Similarly,

[y] =
∫
[x, y]dx

=
∫
[y|x][x]dx . (3.4.17)

It may help you understand what this means by imagining subdividing
the rows and columns in table 3.1 into increasingly smaller divisions and
summing as before, except that now the numbers of rows and columns are
infinite, requiring integration (fig. 3.4.4). But the concept illustrated above is
exactly the same. Extending to multiple random variables, [z1, z2, . . . , zn],
we integrate over all the random variables except the one we seek to
marginalize, an operation sometimes referred to as “integrating out.” We
accomplish the same thing as we did in the discrete case: we convert a joint
distribution into a univariate distribution.
Integrals like those in equations 3.4.16 and 3.4.17 will appear frequently

later in the book as a way to focus on the univariate distribution of
unknown quantities that are parts of joint distributions that might contain
many parameters and latent quantities. Thus, they are a vital tool for
simplification. We urge you to be sure you understand what these integrals
mean based on the simple example here before you proceed.

3.4.3 Useful Distributions and Their Properties
We now describe probability distributions that we have found to be
most useful for modeling random variables in ecology. We describe key
features of probability mass functions and probability density functions
here, summarizing other aspects in appendix A. Most ecologists routinely
use functions in software like R (R Core Team, 2013) to compute these
functions. However, it is important to be familiar with the mathematical
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Figure 3.4.4. Examples of marginal distributions. Panel A shows a bivariate normal
distribution for the correlated random variables x and y. The mean of x is 2, the mean

of y is 8, and their covariance matrix is � =
(
10 3
3 2

)
. (If you are unfamiliar with

covariance matrices, skip ahead momentarily to see box 3.4). Panel D shows 10,000
draws from the joint distribution of x and y. (B) Imagine that we “binned” all the
observations of x to create a normalized histogram, ignoring the values of y. If the bins
are infinitely small, we are “integrating out” y. (C) We similarly obtain the marginal
density of y by integrating out x .
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formulas that stand behind the computational versions of these functions
because we will occasionally use these formulas later in this book, because
mathematical expressions for distributions often appear in the literature, and
because the expressions can be usefully manipulated, as will be illustrated
with the exponential distribution later in this section.
One other concept is needed here. The material in section 3.4.1 treated

probability distributions as if they had a single argument, z. This simplifica-
tion made it easier to concentrate on the basic properties of probability mass
functions and probability density functions undistracted by other arguments
to the functions. However, specific distributions require parameters as
arguments in addition to the random variable. Parameters are arguments
to functions that give probability distributions a particular shape, that is, a
central tendency, dispersion, and skew. Many ecologists are most familiar
with the normal distribution for which the parameters and the first and
second moments (i.e., the mean and variance) are the same. This is also
true for the Poisson distribution, which has a single parameter, the mean,
which is equal to the variance. For all other distributions, the moments and
the parameters are not the same. Instead, the moments are functions of the
parameters, and, hence, the parameters are functions of the moments. We
will use these functional relationships between moments and parameters in
a powerful way in section 3.4.4. For now, we highlight differences between
random variables and parameters by using a consistent notation. We will
denote random variables as z,14 and we will use Greek letters to symbolize
parameters.

3.4.3.1 Probability Mass Functions for
Discrete Random Variables

Poisson. The Poisson distribution describes the probability of a number
of events (z) occurring in a given unit of time or space assuming that the
occurrence of one event has no influence on the probability of occurrence
of the subsequent event (fig. 3.4.5). The distribution has a single parameter,
λ, the average number of occurrences, also called the intensity. Note that
λ is a positive real number, whereas z must be a nonnegative integer.15

14We typically use lowercase letters to denote univariate random variables throughout. Keep
in mind that it is also common to see uppercase letters for random variables and lowercase letters
for “realizations” of random variables (i.e., their numerical values). We use uppercase letters for
matrices, so to avoid inconsistencies, we let the context dictate whether a lowercase letter denotes
a random variable or a value. We find that our notation does the job most of the time and leads to
substantially less confusion than the somewhat more conventional notation.

15Negative values for z are not defined because z! is not defined for z < 0. However, functions
in software, notably R (R Core Team, 2013), return 0 for negative arguments to the Poisson
probability mass function.
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Figure 3.4.5. Example probability mass functions for discrete random variables with
means (µ), standard deviations (σ ), and parameters (λ, κ, n, φ).

The Poisson distribution applies to random variables for which the average
number of events is the same as the variance in the number of events, that
is, the first and second central moments are equal.
The Poisson probability mass function is

[z|λ] = Poisson(z|λ) = λz

z!
e−λ. (3.4.18)

The function returns the probability of occurrence of z events conditional
on the value of λ. You may also see the Poisson distribution written as

[z|λ] = Poisson(z|λ) = (γ λ)z

z!
e−γ λ, (3.4.19)
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where γ specifies a specific interval of time, length, area, or volume; and
λ is a rate, the number of occurrences per unit of time, length, area, or
volume. Thus, the parameter γ sets the scale of the process. The quantity γ
is entered into the equation as known (that is, as perfectly observed data)16

and is called an offset. When the Poisson is expressed as equation 3.4.19, the
parameter γ has units of time, length, area, or volume, and λ is a rate with
units that are the reciprocal of the units of γ . When the Poisson is expressed
as equation 3.4.18, then λ is unitless, because it refers to the average number
of things. Units are implicit and are defined by the area, time interval, and
so forth, over which counts are made.

Negative Binomial. Using the Poisson distribution requires the re-
strictive assumption that the mean of the distribution equals the variance.
Sometimes we will wish to model the intensity of a number of events where
the variance in the number of events exceeds the mean. In this case, the
negative binomial distribution is a logical choice (fig. 3.4.5). It applies to
the same type of count data as the Poisson but contains a second parameter,
κ , controlling the dispersion of the distribution:

[z|λ, κ] = negative binomial(z|λ, κ) = 
 (z + κ)


 (κ) z!

(
κ

κ + λ

)κ( λ

κ + λ

)z

.

(3.4.20)

The gamma function, 
( ), may not be familiar to all readers. It is a function
that interpolates a smooth curve connecting the points (x, y) given by
y = (x − 1)! at the positive integer values for x . The mean of the negative
binomial distribution is λ, and the variance is λ+ λ2/κ .
A second version of the negative binomial, less commonly used in

ecology, gives the probability of a number (z) of failures that occur in a
sequence of Bernoulli trials17 before a target number of successes (k) is
obtained:

[z|k, φ] = negative binomial(z|k, φ) = 
 (z + k)


(k)z!
φk (1 − φ)z . (3.4.21)

The parameter φ is the probability of a success on a single trial. The
parameter k is usually referred to as the size in this parameterization.
Software sometimes uses equation 3.4.21 in functions for the negative

binomial, so you need to be careful using them if your intention is to use

16This is why it does not appear in the distribution [z|λ]. More about this later.
17A Bernoulli trial is an experiment with two possible outcomes. Coin flipping is the classical

example of a Bernoulli trial.
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3.4.20. A little algebra allows you to modify the arguments to functions
implemented in software. To modify equation 3.4.20 so that the parameter k
represents dispersion (as in eq. 3.4.20), substitute κ/(λ+κ) for the function
argument φ.

Binomial. The binomial distribution portrays counts that can be as-
signed to one of two possible categories, for example, alive or dead, present
or absent, male or female, exotic or native, diseased or healthy (fig. 3.4.5).
The distribution describes the probability of the number of “successes” out
of n trials conditional on the parameter φ, the probability of a success on
any single trial. “Successes” arbitrarily refers to one of the two categories
such that successes + failures = number of trials. Trials most often represent
observations of a specific number of individual organisms, locations, or
sampling plots in the two categories. The probability mass function for a
binomial random variable18 is

[z|n, φ] = binomial(z|n, φ) = (n
z

)
φz(1 − φ)n−z. (3.4.22)

The random variable z and parameter n must be integers; the parameter φ
is a real number, 0 ≤ φ ≤ 1. The function returns the probability of z
successes conditional on n and φ. The mean of the binomial distribution is
nφ, and the variance is nφ (1 − φ).

Bernoulli. The Bernoulli is a special case of the binomial where the
number of trials = 1. Its probability mass function is

[z|φ] = Bernoulli(z|φ) = φz(1 − φ)1−z for z ∈ {0, 1}. (3.4.23)

The parameter φ is the probability of success (z = 1) on a single trial. The
function computes z = 1 with probability φ and z = 0 with probability
1 − φ. The Bernoulli distribution has particularly important application in
modeling presence or absence data and in occupancy modeling, where it is
used to estimate the probability that a particular state is detected, allowing
us to separate cases where a state of interest is “unoccupied” from the state
“occupied but not observed.” Examples of these models will be treated in
sections 6.2.3 and 12.3.

18The term
(n

z

) = n!/z!(n − z)!.
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Multinomial. The multinomial distribution is used to model random
variables that fall into more than two categories on η trials:

[z|φ, η] = multinomial(z|φ, η) = η!
k∏

i=1

φ
zi
i

zi !
. (3.4.24)

The symbol
∏k

i=1 might be unfamiliar to some readers. It means, take a
product over all the k quantities indexed by i . So, it is the multiplicative
equivalent of the more familiar summation

∑k
i=1.

The multinomial is the first multivariate distribution we have encoun-
tered. It is multivariate because it returns the probability of a vector of
random variables (z), conditional on a vector of parameters (φ) specifying
the probability of occurrence in each category. The parameter η is the total
number of occurrences, η = ∑k

i=1 zi , where k is the number of categories.
The mean of each category is ηφi , and the variance is ηφi (1 − φi ).
The multinomial has many applications in ecological modeling because

it is used to represent the number of individuals in a set of mutually
exclusive states—a common output of ecological models. It is applied in
capture-recapture analysis; in modeling movement of individuals among
discrete locations; and in discrete-time matrix modeling of populations,
communities, and ecosystems.

3.4.3.2 Probability Density Functions for
Continuous Random Variables

Normal. The univariate normal distribution (also known as the
Gaussian distribution) applies to continuous random variables that can take
on values across the entire number line, −∞ < z < ∞ (fig. 3.4.6).
It is widely used in statistics because it has properties allowing many
results to be derived analytically, for example, least-squares estimates of
parameters.19 In addition, the normal distribution is widely used because
of the central limit theorem, which states that the sum of a large number of
samples from any distribution will be normally distributed. The variance
of the normal distribution does not depend in any way on the mean of
the distribution. The probability density function for a normally distributed

19It is easy to forget that the discipline of statistics developed well before the advent of fast
computers. During much of that period of development, analytically tractable distributions were
the sole route to useful results in research.
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Figure 3.4.6. Example probability density functions for continuous random variables
with means (µ), standardard deviations (σ ), and parameters (α, β, λ).
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random variable is

[
z|µ, σ 2

]
= normal(z|µ, σ 2) = 1

σ
√
2π

e− (z−µ)2
2σ2 . (3.4.25)

It is important to note that despite its widespread use in traditional
statistics, the normal distribution is often not an appropriate choice for
modeling in ecology. The reason is that the preponderance of ecological
quantities are nonnegative, which means that the support for these random
variables should be zero for negative values (i.e., Pr(z ≤ 0) = 0), which of
course is not true for the normal. Moreover, the normal is always symmetric
and cannot represent the skewness that often arises in distributions of
ecological quantities. Finally, the variance of a random variable often
increases with the mean, but the normal has a constant variance. These
problems are overcome by the lognormal and gamma distributions.

Lognormal. If a random variable z is normally distributed, then ez is
lognormally distributed; if a random variable z is lognormally distributed,
then log(z) is normally distributed. The lognormal distribution (fig. 3.4.6)
has properties analogous to those of the central limit theorem for the
normal. If we take the product of large numbers of random variables,
then the outcome is lognormally distributed regardless of the underlying
distributions of the individual random variables. The lognormal distribution
is widely used to represent growth of individuals or populations. If we
define a growth process as zt = αzt−1, then it follows that the random
variable, zt at time t represents the product of a constant α and the previous
state of the random variable, zt−1. The lognormal offers a good choice
for modeling the process because it can be represented as a product of
states and parameters. The probability density function for the lognormal
distribution is

[z|α, β] = lognormal(z|α, β) = 1

z
√
2πβ2

e
− (log(z)−α)2

2β2 , (3.4.26)

where α is the mean of log(z), and β is the standard deviation of log(z). It
would be tempting to think that the mean of the distribution is eα , which
instead gives the median. The mean depends on both parameters, such that

E (z) = µ = eα+β2/2. (3.4.27)
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Similarly, the variance of the lognormal distribution also depends on α
and β:

E
(
(z − µ)2

)
= σ 2 = (eβ

2− 1)e2α+β2
. (3.4.28)

The variance of the lognormal increases in proportion to the square of the
mean for any given set of parameters α and β. Ecologists often observe
continuous, nonnegative quantities for which the variance increases with the
mean, which suggests that the lognormal or gamma can be used to model
those quantities.

Gamma. The gamma distribution is broadly useful in ecology for
modeling random variables that are nonnegative (fig. 3.4.6). Like the
lognormal, the gamma distribution is well suited for representing random
variables that are skewed. The gamma distribution was originally derived
to model the time required for a specified number of events to occur in
a Poisson process, that is, where events occur at average rate λ, and the
occurrence of an event has no influence on the occurrence of a subsequent
event. The distribution is also used to represent random variability in the
mean, λ, of the Poisson distribution and thereby provides the basis for the
derivation of the negative binomial.
The probability density function for the gamma distribution can take two

forms. We will use

[z|α, β] = gamma(z|α, β) = βα


(α)
zα−1e−βz , (3.4.29)

where α is called the shape, and β, the rate. Both parameters must be
positive real numbers. The mean of the gamma distribution is

E (z) =µ= α
β
, (3.4.30)

and the variance is

E
(
(z − µ)2

)
= σ 2 = α

β2
. (3.4.31)

An alternative parameterization for the gamma distribution is

[z|k, θ ] = gamma(z|k, θ ) = 1


(k)θ k
zk − 1e− z

θ , (3.4.32)
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where k is called the shape, and θ , the scale. This form is used to model
the waiting time z for k events in a Poisson process where the average
waiting time between events is θ = β−1. The distribution can also be
parameterized with a shape, k, and a mean parameter, kβ−1. The same
ideas about “waiting times” can be applied to space by using the gamma
distribution to model the distance or area that must be covered before
encountering k items that are Poisson distributed over space.

Exponential. The gamma distribution simplifies to the exponential
distribution when α = 1 or k = 1. The exponential distribution (fig. 3.4.6)
gives the probability of times or distances between sequential events in a
Poisson process,

[z|λ] = exponential(z|λ) = λe−λz, (3.4.33)

where λ is the average number of events per unit of time or space. For
example, if prey are captured at an average rate λ, then the number
of prey captured follows a Poisson distribution, and the time between
captures follows an exponential distribution. The mean of the exponential
distribution is λ−1, and the variance is λ−2.
The exponential distribution has direct application to ecological models

composed of systems of differential equations in showing the relationship
between rates (time−1) and probabilities. Consider the differential equation

dq

dt
= −kq, (3.4.34)

which describes the instantaneous rate of change in a state variable, q . The
quantity q can represent anything—number of individuals in a population,
grams of nitrogen in the soil, area of landscape in forest. The usual
metaphor for q is a “compartment,” and equation 3.4.34 describes the rate of
movement of particles (individuals, atoms, pixels) out of the compartment.
The rate of change per particle is

dq

dt

1

q
= −k. (3.4.35)

We can use the exponential distribution to translate the rate k (time−1)
into the probability that a particle leaves the compartment during a time
interval �t . We define the event “waiting time of a particle in the compart-
ment” as the random variable z. The cumulative distribution function for
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the exponential distribution is
∫ z

−∞
exponential(u|λ) du = 1 − e−λz. (3.4.36)

If we let z = �t and λ = k, where k is a continuous time rate constant
(with dimensions of time−1, equation 3.4.35), then the probability that a
particle has waiting time z < �t is 1 − e−k�t , which is the probability that
it leaves the compartment during �t . The probability that it remains in the
compartment is the complement, e−k�t . It follows that the average number
of particles that leave the compartment during t to t +�t is qt (1 − e−k�t ),
and the average that remain is qt e−k�t . For example, if the compartment
represents “individuals that are alive,” and k is the instantaneous mortality
rate, then e−k�t gives the probability that an animal survives from time t
to t +�t , 1 − e−k�t gives the probability that it dies, qt

(
1 − e−k�t

)
is the

average number of deaths, and qt e−k�t is the average number of survivors.
Of course, these population results can also be derived from the solution to
the differential equation, qt+�t = qt e−k�t .
Although the approach illustrated here uses constant relative rates (i.e.,

k), the same equations can be applied to nonlinear rates if �t is sufficiently
small. So, for example, if the rate of conversion of susceptible individuals,
S, to infected ones in a population is controlled by the nonlinear rate
d S
dt = −βSI , where I is the number of infected individuals, then per capita
rate of infection is d S

dt
1
S = −β I , and the probability that a susceptible

becomes infected during a small interval of time �t is 1 − e−β I�t .
This type of logic forms a fundamental link between traditional,

continuous-time state variable models in ecology, discrete-time state vari-
able models, and models that are individual based. However, it is surpris-
ingly absent from texts on individual-based modeling (e.g., Railsback and
Grimm, 2012).

Inverse Gamma. The inverse gamma distribution (fig. 3.4.6) models
the reciprocal of a gamma-distributed random variable. If b ∼ gamma(α,θ ),
and z = b−1, then the probability density of z is given by

[z|α, β] = βα


(α)
z−α−1 exp

(−β
z

)
, (3.4.37)

where the scale parameter β = θ−1. At the risk of getting ahead of
ourselves, the inverse gamma is particularly useful in modeling the variance
of the normal and lognormal distributions. We will study this application in
sections 5.3 and 7.3.2.
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The mean of the inverse gamma distribution is

E (z) = µ = β

α − 1
forα > 1, (3.4.38)

and the variance is

E(z − µ) = σ 2 = β2

(α − 1)2(α − 2)
forα > 2. (3.4.39)

Beta. The beta distribution (fig. 3.4.6) models the distribution of random
variables that can take on values between 0 and 1.20 It is often used to
model uncertainty in probabilities and proportions, making it an essential
part of the toolbox of distributions needed by the ecological modeler. The
probability density of a beta-distributed random variable, z, conditional on
parameters α and β is

[z|α, β] = beta(z|α, β) = 
(α + β)


(α)
(β)
zα−1(1 − z)β−1. (3.4.40)

The mean of the distribution is

E(z) = µ = α

α + β
, (3.4.41)

and the variance is

E
(
(z − µ)2

)
= σ 2 = αβ

(α + β)2(α + β + 1)
. (3.4.42)

Beta distributions are widely used in analysis of survival, detection proba-
bility, and decomposition.

Uniform. The uniform distribution (fig. 3.4.6) returns a single probabil-
ity density for all values of the random variable for which the probability
density is greater than 0:

[z|α, β] =




1
β−α for α ≤ z ≤ β,

0 for z < α or z > β
. (3.4.43)

20Be careful not to confuse this with the Bernoulli, which models random variables that are 0
or 1.

This content downloaded from 
������������132.177.238.75 on Tue, 08 Mar 2022 17:07:19 UTC������������� 

All use subject to https://about.jstor.org/terms



Principles of Probability • 63

The mean of the uniform distribution is µ = (β + α)/2, and the variance
is σ 2 = (β − α)2/12. The uniform is especially useful for defining vague
prior distributions in Bayesian analysis.

Multivariate Normal. The multivariate normal distribution is often
used to represent a set of correlated real-valued random variables, each of
which centers around a mean. It is particularly valuable for representing
the probability distribution of data that are correlated over time or space
and has important applications in regression. The multivariate normal is a
generalization of the normal distribution for a single random variable to
the distribution of a random vector of variables. A random vector is k-
variate normally distributed if each linear combination of its elements has a
univariate normal distribution. The probability density is

[z|µ,�] = multivariate normal(z|µ,�) = (2π)−
k
2 |�|− 1

2 e− 1
2 (z−µ)′�−1(z−µ),

(3.4.44)

where z is a vector of random variables, µ is a vector of means, and
� is a variance-covariance matrix (box 3.4). The term |�| indicates the
determinant21 of �.

Box 3.4 Covariance Matrices

We do not use covariance matrices often in this book, but it is important to
understand them, because they are needed when modeling a vector of random
variables rather than a single one. Each of these random variables has its own
variance, but they also may covary. Covariance describes how two or more
random variables deviate from their mean–if they covary, then they deviate in
similar ways. The covariance of random variables x and y is formally defined as

σxy =E ((x − E (x)) (y − E (y))) . (3.4.45)

(continued)

21Don’t confuse � with the summation sign. Instead, it is uppercase boldface version of the
scalar σ used to indicate a matrix. Determinants are quantities calculated on square matrices. The
use of determinants is beyond the scope of this book, but we wanted to clarify this notation so that
it is not confused with absolute value.
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(Box 3.4 continued)

As you might expect, covariance is closely related to correlation
(
ρxy

)
,

ρxy = E ((x − E (x)) (y − E (y)))

σxσy
, (3.4.46)

where σx and σy are the standard deviations of the two random variables. When
random variables covary, a scatter plot of their values tends to fall along a line,
as in figure 3.4.4 D. When they do not covary, the values form a diffuse cloud.

A covariance matrix is a square matrix with the number of rows and columns
equal to the number of elements in the vector being modeled. The diagonal
elements are the variances of each random variable in the vector, and the off-
diagonal elements i, j are the covariance of random variable i with random
variable j. If we assume that all random variables in the vector have the same
variance, σ 2, and do not covary, then � = σ 2I, where I is the identity matrix,
consisting of 1s on the diagonal and 0s elsewhere. In this case, � has σ 2 on the
diagonal, and 0s elsewhere.

Dirichlet. The beta distribution models a random variable that can take
on a value between 0 and 1. The Dirichlet is the multivariate analog
of the beta—it models random variables that are vectors of proportions
summing to 1. Thus, it can be especially useful in modeling composition
of populations, communities, and landscapes as well as the time or energy
budgets of individuals. The probability density of a random vector z
conditional on a vector of k parameters α is

[z|α] = Dirichlet(z|α) =


(∑k

i=1 αi

)
∏k

i=1 
(αi )

k∏
i=1

zαi −1
i , (3.4.47)

where k is the number of elements in the vector. The mean of the i th element
of the random vector z is E(zi ) = µi = αi

α0
with variance E((zi − µi )2) =

σ 2
i = αi (α0−αi )

α20 (α0+1)
, where α0 = ∑k

i=1 αi .
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3.4.4 Moment Matching
The concept of parameters that differ from moments is unfamiliar to
ecologists trained in statistics classes emphasizing methods based on the
normal distribution, which is to say, most ecologists. The two parameters of
the normal distribution are its first and second central moments, the mean
and the variance, motivating students and colleagues to ask us, “Why are
parameters necessary? Why not simply use the moments as parameters for
distributions?”
The answer is important, if not obvious. In the normal and multivariate

normal, the variance does not change for different values of the mean.
However, for other distributions we will use—the binomial, multinomial,
negative binomial, beta, gamma, lognormal, exponential and Dirichlet—
the variance is a function of the mean. Moreover, the parameters of these
distributions are functions of both the mean and the variance, which allows
the relationship between the mean and variance to change as the parameters
change. The only time that the moments can be used as parameters is
when the mean and the variance are the same, as in the Poisson, or are not
related to each other, as is the case for the normal and multivariate normal.
This creates a problem for the ecologist who seeks to use the toolbox of
distributions that we have described so far, a problem that can easily be
seen in the following example.
Assume you want to model the influence of growing season rainfall (xi )

on the mean aboveground standing crop biomass in a grassland at the end
of the growing season (µi in kg/ha). You might be inclined to reach for the
simple linear model µi = γ0 +γ1xi to represent this relationship. However,
there are structural problems with a linear model, because it predicts values
that can be negative, which makes no sense for biomass. Moreover, it
predicts that growth increases infinitely with increasing rainfall, which
clearly is not correct on biological grounds. So, using your knowledge of
deterministic models (chapter 2), you choose

µi = κxi

γ + xi
, (3.4.48)

thereby deftly assuring that the model’s estimate is nonnegative for nonneg-
ative values of xi and asymptotically approaches a maximum, κ .22

22If you wanted a model with “linear” components, you could also use (κ exp(γ0 + γ1xi ))/(1+
exp(γ0 + γ1xi )), which also has a maximum at κ .
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Equation 3.4.48 is purely deterministic. You would like to represent
the uncertainty that arises because the model isn’t perfect and because
we fail to observe net primary production perfectly.23 Your first thought
about modeling the uncertainty might be to use a normal distribution,
normal(yi |µi , σ

2). So, your model predicts the mean (µi ) of the distribu-
tion of observations of growth (yi ), and the uncertainty surrounding that
prediction depends on σ 2. This is the traditional framework for regression.
It is convenient because the prediction of the model is the first argument
to the distribution. You are probably more familiar with the equivalent
formulation, yi = γ0+γ1xi +εi , εi ∼ normal(0, σ 2). We avoid this additive
arrangement for representing stochasticity because it cannot be applied to
distributions that cannot be centered on zero.
However, informed by the section on continuous distributions, you

decide that the normal is a poor choice for your model for two reasons.
First, the support is wrong. Biomass cannot be negative, so you need a
distribution for data that are continuous and strictly positive. Moreover,
a plot of the data shows that the spread of the residuals increases with
increasing production, casting doubt on the assumption that the variance is
constant. As an alternative, you choose the gamma distribution24 because it
is strictly nonnegative and is parameterized such that the variance increases
in proportion to µ2.
This is entirely sensible, but now you have a problem. How do you get

the prediction of your model, the mean prediction of biomass at a given
level of rainfall (µi ), into the gamma probability density function if the
function doesn’t contain an argument for the mean? How do you represent
uncertainty by using the variance, σ 2?
The solution to this problem is moment matching. You need equations

for the parameters in terms of the moments to allow you to use the gamma
distribution to represent the uncertainty in your model. Equations for
moments as functions of the parameters can be found in any mathematical
statistics text. The converse is not true; it is uncommon to see the parameters
expressed as functions of the moments. However, obtaining these functions
is easy and useful. You simply solve two equations in two unknowns. On
illustration of this solution using the gamma distribution with parameters

23In this case, these sources of uncertainty will be inseparable. Later, we will develop models
that separate them.

24The lognormal would be another logical choice. The gamma or the lognormal would yield
virtually identical estimates of parameters if you fit the model.
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shape = α and rate = β is

µ = α

β
, (3.4.49)

σ 2 = α

β2
, (3.4.50)

so,

α = µ2

σ 2
, (3.4.51)

β = µ

σ 2
. (3.4.52)

You are now equipped to use the gamma distribution to represent the
uncertainty in your model of net primary production:

µi = κxi

γ + xi
,

αi = µ2
i

σ 2
, (3.4.53)

βi = µi

σ 2
, (3.4.54)

[
yi |µi , σ

2
]

= gamma(yi |αi , βi ). (3.4.55)

As a second example, imagine that you want to model the probability of
survival of juvenile birds (µi ) as a function of population density (xi ). Now,
you need a model that makes predictions strictly between 0 and 1, so you
might sensibly chooseµi = (exp(γ0+γ1xi ))/(1+exp(γ0+γ1xi )), 0 ≤ µi ≤
1. But the gamma distribution is no longer appropriate for representing the
uncertainty because it applies to random variables that can exceed 1. The
normal is even worse because it includes negative values and values that
exceed 1. A far better choice is the beta, which models continuous random
variables with support on the continuous interval 0 to 1. Solving for the
parameters in terms of the moments (using equations 3.4.41 and 3.4.42),
you can now make a prediction of survival with your deterministic model
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and properly represent uncertainty using the beta distribution:

µi = exp(γ0 + γ1xi )

1 + exp(γ0 + γ1xi )
, (3.4.56)

αi = µ2
i − µ3

i − µiσ
2

σ 2
, (3.4.57)

βi = µi − 2µ2
i + µ3

i − σ 2 + µiσ
2

σ 2
, (3.4.58)

[
yi |µi , σ

2
]

= beta(yi |αi , βi ). (3.4.59)

Equations 3.4.51, 3.4.52 and 3.4.57, 3.4.58 are examples of moment
matching. We use the functional relationship between the parameters and
the moments to allow us to match the predictions of a model to the
arguments of the distribution that is best suited to the model and the
data. It is important to see how moment matching allows us to specify
characteristics of distributions for which the variance is a function of the
mean. These matching relationships are broadly useful for the ecological
modeler because they allow use of all the distributions we have already
described to represent the stochasticity regardless of the form of the
arguments to those distributions. It is easy enough to derive the moment
matching relationships yourself, but we saved you the trouble in appendix
tables A.1 and A.2.
Up to now, we have matched both mean and variance to parameters.

However, sometimes we need to match only the mean25. Using the beta
distribution as an example, we have µ = α/(α + β), so α = µβ

1−µ , allowing
us to use [y|µ, β] = beta(y| µβ1−µ, β).

3.4.5 Mixture Distributions
The distributions described in section 3.4.3 provide tremendous flexibility
for representing uncertainty in ecological models. Sometimes, however,
a single distribution fails to adequately portray the behavior of random
variables in a way that is faithful to the process that gives rise to them. In
this case, the ecological modeler may need to use mixtures of distributions.

25As you will learn soon (chapter 8), you can obtain the variance of the distribution of the mean
from the output of a Markov chain Monte Carlo algorithm. If you don’t need to know the variance
of the distribution of the observations, then you don’t need to moment match the observation
variance.
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The general form of a finite mixture distribution for discrete random
variables is as follows. Given a finite set of probability distributions for
the random variable z, [z]1, . . . , [z]n , and weights w1, . . . , wn, wi ≥ 0,∑n

i=1wi = 1, the finite mixture distribution of z is

[z] =
∑

i

wi [z]i . (3.4.60)

Similarly, the general form of an infinite mixture distribution for the
variable z depends on a probability density function [z|δ] with parameter
δ. That is, for each value of z in some set δ, [z|δ] is a probability density
function with respect to z. Given a probability density function [δ] (meaning
that [δ] is nonnegative and integrates to 1), the function

[z] =
∫

[z|δ] [δ] dδ (3.4.61)

is an infinite mixture distribution for z.
We give two examples here. Suppose you study a species and you

want to represent the distribution of the random variable, body mass of an
individual, z. The sex of individuals is not easily determined in the field, but
there are differences in body mass between sexes. How would you model
the distribution of these observations?
Because body mass is strictly positive, a gamma distribution is a logical

choice, but a single gamma probability density function is not up to the task
of representing the two sources of variation in body mass arising frommales
and females. Instead, you might use

φ·gamma(z|αm, βm) + (1 − φ) · gamma(z|α f , β f ),

φ∼beta(η, ρ)

where φ is the probability that a draw from the population is male. This
approach provides a weighted mixture of the male and female body mass
distributions where the weighting is controlled by the probability that an
individual is a male.
Ecologists often observe random variables that take on zero values more

frequently than would be predicted by a single, unmixed distribution, for
example a binomial, Poisson, negative binomial, or multinomial. An ex-
cessive number of zero-values for a discrete random variable is called zero
inflation. A second, particularly useful example of a mixture distribution
allows the ecological modeler to deal with this overdispersion.
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To illustrate, imagine that we sampled many plots along a coastline,
counting the number of species of mussels within each plot. In essence
there are two sources of zeros. Some zeros arise because the plot was
placed in areas that are not mussel habitat, while other zeros occur in plots
placed in mussel habitat but that contain no mussels as a result of sampling
variation. The Poisson distribution offers a logical choice for modeling
the distribution of counts in mussel habitat,26 but it cannot represent the
variation among plots, because it can account only for sampling variation.
It cannot portray the zeros that arise because plots were placed in areas
where mussels never live.
We can represent these two sources of uncertainty by mixing a Poisson

distribution with a Bernoulli distribution. Let z be a random variable
representing the number of mussel species in a square meter plot, and w
a random variable describing mussel habitat; w = 1 if a plot is located
in mussel habitat, and w = 0 if it is located outside mussel habitat. The
distribution of number of mussels in a plot is given by

z ∼
{
0 w = 0
Poisson(λ) w = 1

, (3.4.62)

which you will also see written as

z ∼ Poisson(z|λw) · Bernoulli(w|φ), (3.4.63)

φ ∼ beta(η, ρ), (3.4.64)

where λ is the mean number of mussels per square meter in mussel habitat;
φ is the probability that a plot contains mussel habitat, and η and ρ are
parameters that control the distribution of φ. Mixture distributions like this
one will be seen again in one of our examples of hierarchical models in
sections 6.2.3 and 12.3.

26The negative binomial would also work and might be better than the Poisson if the sampling
variation is overdispersed.
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