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Abstract. Abundance and density of wild animals are important ecological metrics.
However, estimating either is fraught with challenges; spatial capture–recapture (SCR) models
are a relatively new class of models that attempt to ameliorate common challenges, providing a
statistically coherent framework to estimate abundance and density. SCR models are
increasingly being used in ecological and conservation studies of mammals worldwide, but
have received little testing with empirical field data. We use data collected via a web and grid
sampling design to evaluate the basic SCR model where small-mammal abundance (N ) and
density (D) are known (via exhaustive sampling). We fit the basic SCR model with and
without a behavioral effect to 11 small-mammal populations for each sampling design using a
Bayesian and likelihood SCR modeling approach. We compare SCR and ad hoc density
estimators using frequentist performance measures. We found Bayesian and likelihood SCR
estimates of density (D̂) and abundance (N̂) to be similar. We also found SCR models to have
moderately poor frequentist coverage of D and N (45–73%), high deviation from truth (i.e.,
accuracy; D̂, 17–29%; N̂, 16–29%), and consistent negative bias across inferential paradigms,
sampling designs, and models. With the trapping grid data, the basic SCR model generally
performed more poorly than the best ad hoc estimator (behavior CR super-population
estimate divided by the full mean maximum distance moved estimate of the effective trapping
area), whereas with the trapping web data, the best-performing SCR model (null) was
comparable to the best distance model. Relatively poor frequentist SCR coverage resulted
from higher precision (SCR coefficients of variation [CVs] , ad hoc CVs); however D̂ and D
were fairly well correlated (r2 range of 0.77–0.96). SCR’s negative relative bias (i.e., average
underestimation of the true density) suggests additional heterogeneity in detection and/or that
small mammals maintained asymmetric home ranges. We suggest caution in the use of the
basic SCR model when trapping animals in a sampling grid and more generally when small
sample sizes necessitate the spatial scale parameter (r) apply to all individuals. When possible,
researchers should consider variation in detection and incorporate individual biological and/or
ecological variation at the trap level when modeling r.
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likelihood; population; spatially explicit capture–recapture models.

INTRODUCTION

Animal abundance and density are primary measures
of interest in the study of wild animals. They are
critically important in the conservation of threatened

and endangered species, are useful in making manage-
ment decisions of harvested populations, and are often
used in the study of ecological relationships (e.g., species

interactions). It has long been recognized that obtaining
a census (i.e., a total enumeration) of wild animals is
rare in ecological studies, necessitating the incorporation

of the probability of detection to correct simple animal
counts (Nichols 1992). However, dealing with variation
in detection probability among individuals and charac-

terizing the effective area sampled to estimate animal

abundance (N̂) or density (D̂) is challenging for most

species.

A common approach for estimating abundance is to

set up an array of detectors or traps to mark and

subsequently recapture individuals over two or more

sampling occasions (e.g., days) and use closed capture–

recapture (CR) models (Otis et al. 1978, White et al.

1982). A frequent issue that arises is the lack of

geographic closure around the trapping array, such that

individuals will move on and off the array throughout

the sampling period. This type of movement is especially

pervasive with individuals that primarily range beyond

the trapping array but may encounter a trap at the

periphery. As such, animal abundance estimates using

closed CR models reflect a super-population of animals

that could have used the trapping array area during the

total sampling period (Kendall 1999). It is challenging to

then estimate animal density, as the super-population
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belongs to an unknown area that extends beyond the

area delineated around the trapping array (Dice 1938).

Density estimates that are not corrected will be

positively biased, with the magnitude generally depend-

ing on the ratio of home range to the detector array size

(Bondrup-Nielsen 1983).

Researchers and managers often seek to estimate

animal density because it is easily scalable and thus

comparable across studies. As such, a variety of

strategies have been considered to estimate the area of

the super-population, often referred to as the effective

trapping area (ETA), and subsequently calculate animal

density as D̂¼ N̂/dETA, where the cvarðD̂Þ is approximated

by the delta method. Two common ad hoc estimators

include adding area around each trap or the minimum

convex polygon of all traps based on the mean

maximum distance moved of individuals detected (full

MMDM [mean maximum distance moved]) and half

this value (half-MMDM; Wilson and Anderson 1985).

There is, however, no theoretical support of one

estimator of the ETA, leading to many estimators with

varying reliability (Wilson and Anderson 1985, Par-

menter et al. 2003, Balme et al. 2009, Efford and Fewster

2013, Ivan et al. 2013).

A relatively new class of statistical models that

provides a unified and statistically coherent framework

to estimate animal density and abundance is spatial

capture–recapture (SCR) models (Borchers and Efford

2008, Royle et al. 2013a). These models are generally

applicable to any species and many different types of

detection devices; they have been used to study the

ecology and conservation of rare and threatened

carnivores (Sharma et al. 2010, Gerber et al. 2012), apes

(Moore and Vigilant 2013), whales (Marques et al.

2012), small mammals (Krebs et al. 2011), and much

more. SCR models can be defined hierarchically where a

spatial process model defines the number of individual

activity or home-range centers over an area of interest

(an area that includes the trapping array) and an

observation model describes the process of how indi-

viduals are observed. The spatial model is either

assumed to follow a binomial point process, where the

number of individuals in the area of interest is finite, or

considered to be a realization of a Poisson point process

(Efford and Fewster 2013). The observation model

depends on the CR sampling method, such as whether

individuals can be observed at one or multiple detectors

on a single occasion (e.g., live trapping vs. photographic

sampling; Efford et al. 2009). The basic SCR model

assumes the proximity of a trap to an activity center is a

significant source of variability in detections of individ-

uals (Borchers and Efford 2008), where a detection

function is used to define how detection probability

declines the farther a trap is from an activity center.

A significant advantage of SCR models is that the

detection function allows for temporary movement on

and off the trapping array, leading to SCR models being

robust to variation in trapping array size and spacing

relative to animal movement (Sollmann et al. 2012).

These models have developed along two parallel lines,

where parameter estimation is done by Bayesian

inference using Markov chain Monte Carlo (MCMC;

Royle et al. 2013b) methods or classical inference by

maximizing the integrated likelihood (Borchers and

Efford 2008). MCMC methods require higher costs in

computation time and user knowledge compared to

likelihood maximization (Efford 2011, Noss et al. 2012).

However, Bayesian inference has been argued to be

more appropriate in the case of small data sets (e.g., few

unique individuals detected; Noss et al. 2012, Thompson

et al. 2012, Royle et al. 2013b), which is common in CR

studies, as likelihood inference predicates on asymptotic

conditions that are unlikely to be met with small

samples, while Bayesian inference does not depend on

this condition.

Several studies have investigated properties of maxi-

mum likelihood (ML) and Bayesian SCR models and

their performance under a variety of scenarios via

simulation (Blanc et al. 2012, Sollmann et al. 2012,

Efford and Fewster 2013, Ivan et al. 2013, Royle et al.

2013a, c, Tobler and Powell 2013). In addition, several

studies have reported empirical differences between SCR

models and ad hoc density estimators (Obbard et al.

2010, Gerber et al. 2011, O’Brien and Kinnaird 2011,

Sollmann et al. 2011, Noss et al. 2012, Howe et al. 2013).

However, to our knowledge, only a single study has

evaluated SCR estimates from empirical data with a

known population (Sharma et al. 2010). SCR empirical

performance with field data is thus largely untested.

The development of SCR models has added greatly to

the field of ecological modeling, but the statistical

development has largely outpaced any real-world

evaluation of these models using real and messy data.

Both simulation and empirical model evaluation are

critical in understanding the appropriate use of a

statistical model and its expected performance. Simula-

tions are useful to evaluate whether a model behaves as

intended under ideal conditions (e.g., unbiased and

nominal confidence coverage of truth) and to evaluate

the robustness of the model to violation of specific

assumptions. However, simulations are inherently lim-

ited and cannot consider the breadth of ecological and

sampling processes (which are never known in their

entirety) that lead to observational data. Empirical

studies are required to field test a priori models with

common ecological data (e.g., sparse data) to gain an

understanding of realistic model performance. When

models perform poorly with empirical data, it is

challenging to recognize how model assumptions were

violated or why the model failed to produce satisfactory

results. Ultimately, however, it is accurate and precise

estimates from field data that are desired by ecologists,

which hinge on the theoretical properties of statistical

models and the appropriateness of model assumptions

to ecological and sampling processes.
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We use the small-mammal CR data of Parmenter et

al. (2003) and empirically evaluate the performance of

the basic SCR model by estimating small-mammal

abundance and density. Parmenter et al. (2003) describe

11 small-mammal populations trapped using a grid and

web sampling design within four replicated enclosures

(Fig. 1) where the rodent populations were enumerated

(i.e., known abundance [N ] and density [D]). They

estimated density from the trapping grid data using CR

super-population estimates with ETA estimators, while

the trapping web data was used in a distance-sampling

approach (Buckland et al. 2001). Frequentist perfor-

mance measures of estimator error were computed for

both approaches using true abundance and density

values. The number of unique individuals captured per

population ranged from five to 46 with the trapping grid

layout and from nine to 51 for the trapping web

(Appendix A: Table A1). Sample sizes were realistic for

small-mammal trapping, but were generally smaller than

recommended for CR modeling (White et al. 1982). Our

objectives are to compare (1) Bayesian and likelihood

SCR modeling approaches to estimating density and

abundance from small sample data, (2) performance

measures between the grid and web sampling designs,

and (3) SCR performance with density estimation

performance from Parmenter et al. (2003). Our study

is the first to evaluate the basic SCR model using

multiple known animal populations.

MATERIAL AND METHODS

We describe relevant small-mammal trapping proce-

dures, while additional details can be found in Par-

menter et al. (2003).

Small-mammal trapping

Trapping occurred in four terrestrial predator-free

enclosures of ;4.2 ha each, arranged in a 2 3 2 array

(Table 1) over a relatively homogenous shrub-steppe

vegetation community in the Sevilleta National Wildlife

Refuge, NewMexico, USA (see Plate 1). Enclosure walls

were constructed in winter/spring, 1997; construction

disturbances were minimal and confined to within 0.5 m

of the inside wall. All rodent species within the enclosure

were native residents, except for some of the deer mice

(Peromyscus maniculatus), which had been introduced to

the enclosures in summer 1997 as part of an ongoing

hantavirus study. Avian predation was possible, but not

observed. Sherman live traps (7.62 3 8.89 3 22.86 cm

folding traps; H. B. Sherman Traps, Tallahassee,

Florida, USA) were used to capture and recapture small

mammals; traps were baited with seeds coated in

molasses, and were opened each evening and checked

in early morning. All individuals were double-tagged

FIG. 1. Sampling designs to evaluate small-mammal density and abundance estimates with known population size using
complete enumeration. All sampling occurred in four terrestrial predator-free enclosures of ;4.2 ha each, arranged in a 23 2 array
(Table 1) over a relatively homogenous shrub-steppe vegetation community in the Sevilleta National Wildlife Refuge, NewMexico,
USA. Grid and web layout (left panel) consisted of a trapping grid with 144 traps (gray squares) arranged 12 3 12 with a 10-m
inter-trap distance for a trapping area of 1.21 ha. The trapping web was composed of 12 radial lines that extended 100 m from the
center; 12 traps (black circles) were placed along each line with the first four at 5-m intervals and the following eight at 10-m
intervals. An additional four traps were placed at the center of the web, for a total of 148 traps. The circular area of each trapping
web was 3.14 ha. Saturation trapping (right panel) was done to completely enumerate small-mammal populations, following the
collection of the test data via grid sampling. Each previously sampled enclosure was trapped for an additional four days, and then
until no unmarked individuals were captured (13 July–18 July 1998 and 20 July–24 July 1998); the saturation trapping grid was 223
22 with a 10-m inter-trap interval (484 traps [gray squares], ;115 traps/ha).
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with both PIT tags (MUSICC Chip Identification

System, Avid Identification Systems, Norco, California,

USA) and ear tags (Gey Band and Tag, Norristown,

Pennsylvania, USA; except for Perognathus flavus, for

which unique toe clips were used for identification

because their ears were too small for tags). The trapping

grid consisted of 144 traps arranged 123 12 with a 10-m

inter-trap distance, for a trapping area of 1.21 ha (Fig.

1). The trapping web was composed of 12 radial lines

that extended 100 m from the center (Fig. 1); 12 traps

were placed along each line with the first four at 5-m

intervals and the following eight at 10-m intervals. An

additional four traps were placed at the center of the

web, for a total of 148 traps. The circular area of each

trapping web was 3.14 ha.

Test data were collected by trapping each enclosure

for five days. Two enclosures were each trapped using

the grid and web layout (28 June–2 July 1998, nearly a

year after enclosure construction), and then the trapping

layout was switched (5 July–9 July 1998). Following the

collection of the test data, saturation trapping was done

to completely enumerate small-mammal populations.

Each enclosure was trapped for an additional four days,

and then until no unmarked individuals were captured

(13 July–18 July 1998 and 20 July–24 July 1998); the

saturation trapping grid was 22 3 22 with a 10-m inter-

trap interval (Fig. 1; 484 traps, ;115 traps/ha).

Parmenter et al. (2003) identified 11 populations by

species or groups of species (Heteromyidae [Perognathus

and Dipodomys], Cricetidae [Peromyscus]); groups of

species were aggregated to a population due to small

sample size and taxonomic similarity (e.g., Peromyscus

spp.). True abundance (N ) was calculated as the number

of unique individuals by species or group of species

caught per enclosure and true density (D) as abundance

divided by the exact area of the enclosure (Table 1).

Population estimation

We estimated small-mammal density (D̂) and abun-

dance (N̂) by population using two basic SCR models;

the first model only considers space use to affect

detection (null), while the second model also includes a

behavioral effect (behavior; e.g., trap-happy or trap-

shy). It is expected that when animals are trapped with a

food reward, there will likely be a behavioral response;

however, due to small sample size the behavioral effect

may be undetectable and a null model more appropriate

(Otis et al. 1978). We fit both models to each

population’s test data collected from the trapping grid

and web using available Bayesian and likelihood

methods.

The Bayesian SCR model was first defined with a

state-space (S ) with the same dimensions as each

enclosure. The number of activity centers (si ¼ sxi, syi )

were finite and uniformly distributed within S (si ;

Uniform[S ]) for individual i ¼ 1, 2, . . . , N. We defined

observations by the encounter histories yijk for individ-

ual i¼ 1, 2, . . . , N, trap j¼ 1, 2, . . . , J, and occasion k¼
1, 2, . . . , K. Each trap is indexed by the coordinate xj
and we restricted individuals to only be allowed to be

captured at a single trap per occasion; the encounter

history yijk ; Categorical(pijk) indicates the trap each

individual was encountered at from 1, 2, . . . , J, or Jþ 1

if it was not encountered (Royle et al. 2013b). For the

null model, we defined variation in detection using the

multinomial-logit function (mlogit), such that mlo-

git(pijk )¼a0� dij/2r
2, where dij is the squared Euclidian

distance between si and xj (dij ¼ ||si � xj||
2). The

parameter a0 represents the probability of detecting an

individual when a trap is located at the activity center

and r represents how quickly detection probability

declines as the distance between activity center and trap

increases. This detection function is equivalent to

assuming individuals have a strict circular bivariate

normal home range. The categorical observation model

is technically misspecified for single-animal traps, as it

allows multiple individuals to be caught in a single trap.

Trap competition among individuals with single-animal

traps violates the independence assumption of the

observational model and creates dependency among

TABLE 1. Small-mammal population characteristics where abundance and density were
determined by complete enumeration.

Population
number

Species or groups
of species

Grid and
area (ha)

True
abundance

True density
(individuals/ha)

1 Perognathus flavus NE (4.28) 88 20.57
2 P. flavus SW (4.13) 39 9.44
3 P. flavus SE (4.19) 58 13.83
4 P. flavus NW (4.25) 81 19.06
5 Cricetines SW (4.13) 65 15.73
6 Cricetines SE (4.19) 22 5.24
7 Cricetines NW (4.25) 33 7.76
8 Cricetines NE (4.28) 33 7.71
9 Peromyscus maniculatus SW (4.13) 26 6.29
10 P. maniculatus NE (4.28) 14 3.27
11 Dipodomys spp. SE (4.19) 18 4.29

Note: In grid and area column, area is shown in parentheses. NE, NW, SE, and SW refer to the
different enclosure areas, referenced by their east–west, north–south position.
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the capture histories; this issue has yet to be formally

resolved (Royle et al. 2013b). However, we expect

density estimation bias to be negligible, given that mean

trap saturation (the proportion of traps occupied across

occasions) was much lower (,0.31; Appendix A: Table

A2) than needed to incur noticeable bias (Efford et al.

2009). The behavior model is the same as the null model,

but also includes an individual-level, non-trap-specific

binary covariate (behav) in the detection function, where

behavik¼ 1 if individual i was captured prior to occasion

k and 0 if not. We assume that after an individual is

initially trapped, it will respond similarly to all traps on

the grid as a learned response of recognizing the shape

and material of the traps and the reward within.

As is common to fit Bayesian SCR models, we

augment the test data with all zero capture histories

from n to M, where n is the number of unique

individuals detected and M is an arbitrarily large value

that is much greater than N (e.g., Royle and Dorazio

2012). Further, we define a set of latent variables, zi ;

Bernoulli(w) from i¼1, 2, . . . ,M, where zi¼1 indicates

individual i is a member of the population N, or

otherwise is not. We chose relatively uninformative

prior distributions for unknown parameters: a0 ;

Normal(0, 200), r ; Uniform(0, 200), including the

behavioral effect parameter as b ; Normal(0, 200).

Instead of using the common discrete uniform prior on

N (implied by w ; Beta(1,1)), which can lead to

improper posterior distributions, we used the scale

prior (w ; Beta(0.000001,1); Link 2013). The null SCR

model using data augmentation is completely specified

in Appendix B: Fig. B1.

We fit models using the R package rjags, which

interfaces with software JAGS (Plummer 2013), in

which MCMC is used to simulate samples from the full

conditional distributions of unknown parameters of our

statistical model (see Supplement). We initialized three

chains with over-dispersed starting values that were each

run for 60 000 iterations, discarding the first 10 000 as a

burn-in, and computed posterior summaries from the

remaining 50 000 samples. We assessed convergence

graphically and using the Gelman-Rubin statistic, R̂

(Gelman and Rubin 1992); an R̂ below 1.1 indicates

convergence (Gelman 2007). For all models and all test

data, R̂ � 1.02. To summarize posterior distributions,

we used the posterior mode (i.e., the most probable

value) as our measure of central tendency and calculated

95% highest posterior density (HPD) intervals, because

we expect asymmetric posteriors because of small

sample sizes (Chen et al. 2000). The posterior mode

has been shown to be unbiased in SCR simulation

studies with small samples and is favored over the

positively biased posterior mean (Marques et al. 2012,

Thompson et al. 2012), especially when interested in

frequentist performance (Kery et al. 2011). When the

posterior distribution is symmetric and unimodal, the

mode is equal to the mean and HPD intervals are equal

to the more commonly used equal-tailed credible

intervals (Chen et al. 2000, Wilks 2011).

We estimated small-mammal population size similarly
using the SCR likelihood approach available in the R

package secr (Efford 2013). We considered the popula-

tion size as a finite number of individual activity centers,
rather than a realization from a Poisson process, which

is common in likelihood SCR modeling. The observa-

tion process is defined differently than the Bayesian

model, where an additive hazard model is used to restrict
individuals to a single trap per occasion (Borchers and

Efford 2008); the half-normal detection function is the

same. As with the Bayesian observation model, there is
still competition among individuals for traps, such that

the model is still misspecified. We fit the null and

behavior models to each population by maximizing the
unconditional integrated likelihood using the Nelder-

Mead optimization algorithm (Nelder and Mead 1965);

secr uses a discretized state-space, where the likelihood
function was evaluated over a grid the size of each

enclosure (A[S ]) with equally spaced points at 1-m

intervals, representing potential activity centers. We
report the maximum likelihood estimate (MLE) of D

and 95% asymmetric confidence intervals. While D is

explicitly in the likelihood, abundance is derived as N̂¼
A(S )D̂ and is referred to as fixed-N (Efford and Fewster
2013). We estimated the variance of fixed-N as cvarðN̂Þ
¼ AðSÞ2cvarðD̂Þ and calculated lognormal confidence

intervals, as they have performed well in simulation
and naturally satisfy that the lower interval is greater

than n (Efford and Fewster 2013).

SCR model performance

To evaluate model performance, we computed five

attributes of frequentist error using the estimates from
each population and the true values (defined by exhaustive

sampling), following Parmenter et al. (2003): (1) Confi-

dence interval coverage was calculated as the percentage
of times the true value (x) lay within the estimated 95%
lower and upper confidence or 95% HPD limits for each

population. Under many repeat surveys, we would hope
for 95% coverage, but for our 11 populations, coverage

could be considered good when it was relatively high, such

as .90 % (10/11 or 11/11). (2) Mean relative mean

squared error (RMSE) was computed as

RMSE ¼ 1

11

X11

i¼1

ðx̂i � xiÞ2

xi
3 100

where i¼ 1, 2, . . . , 11 estimates. Smaller values indicate a

lower bias, variance, or both. (3) Mean relative accuracy
(RA) was computed as

RA ¼ 1

11

X11

i¼1

jx̂i � xij
xi

3 100

where i ¼ 1, 2, . . . , 11 estimates. This is a measure of
absolute deviation of estimates from truth across the
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populations; smaller values indicate estimates were closer

to truth. (4) Mean relative precision or mean coefficient of

variation (CV), was computed as

CV ¼ 1

11

X11

i¼1

SEðx̂iÞ
x̂i

3 100

where i ¼ 1, 2, . . . , 11 estimates. This is a measure of

uncertainty around the point estimate. (5) Mean relative

bias (RB) was computed as

RB ¼ 1

11

X11

i¼1

x̂i � xi

xi
3 100

where i ¼ 1, 2, . . . , 11 estimates. Values close to zero

indicate better model performance across the populations.

Lastly, we also evaluated the accuracy of each models

point estimate using linear regression analyses of D̂ vs. D;

the most accurate model would have a slope nearest to 1

and the highest coefficient of determination (r2).

Ad hoc density estimators

Parmenter et al. (2003) estimated small-mammal

density from the trapping grid data using four estima-

tors of the ETA with 10 closed CR models. The trapping

web data were analyzed using 12 distance-sampling

models. We compare SCR estimates with the best-

overall-performing ETA estimators (half-MMDM and

full MMDM, calculated using individuals detected at

.1 trap locations) using capture–recapture models that

had similar a priori assumptions as SCR models on

detection: constant (M0), heterogeneity (Mh), behavior

(Mb), and behavior with heterogeneity (Mbh; Otis et al.

1978). We also compare SCR estimates to the best-

performing distance model with the trapping web data,

where the detection function is uniform-cosine, and with

a model using the half-normal function due to its

similarity to the basic SCR model.

RESULTS

Comparison of Bayesian and ML SCR modeling

We found that D̂ and N̂ from the ML and Bayesian

SCR modeling approaches were similar overall for a

given model and sampling design (Figs. 2 and 3,

Appendix B: Tables B1–B4). However, the posterior

mode was mostly smaller than the ML SCR estimates.

As predicted, all posterior distributions of population

size were either lightly or heavily positively skewed (e.g.,

Appendix B: Fig. B2). We found the frequentist

coverage of the true value of population size (D and

N ) was similar and below the nominal level, regardless

of sampling design, inferential paradigm, and model

(45–73%; Table 2). The likelihood modeling approach

consistently had lower CV and RB. However, RA was

mostly similar between the two approaches, but the r2 of

the point estimates was consistently slightly better under

the Bayesian paradigm (Appendix B: Fig. B3). In other

words, the likelihood approach was more precise and

had a better balance of estimates that were both larger

and smaller than the true values, but both methods had

a similar level of overall inaccuracy. When truth was not

covered by density or abundance intervals, point and

interval estimates tended to be lower than truth.

Comparing SCR performance between the trapping web

and grid

Neither data from the trapping grid or web were

consistently better in terms of number of unique

FIG. 2. Small-mammal density estimates (open circles) with 95% highest posterior density (HPD) intervals from two spatial
capture–recapture (SCR) models where traps were arranged in a grid: (a) null SCR, (b) behavior effect SCR. The x-axis
indicates the population (1–11; see Table 1) and whether the estimate is from a maximum-likelihood (designated with a) or
Bayesian analysis (designated with b). The true density is indicated as an ‘‘x’’ when included in the HPD interval and a square
when not.
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individuals detected or frequency of recaptures (Ap-

pendix A: Table A1). However, there were distinct

differences between estimates from the sampling

designs; the null model performed better with the

trapping web, while the behavior model performed

better with the trapping grid, except in terms of RB.

Overall, the trapping web had a small RMSE and RA,

but a higher RB (Table 2, Appendix B: Fig. B3). The

trapping web data under the null model had a slope

closest to 1.0 (ML had 0.933 and Bayesian had 0.905)

and the highest r2 (ML had 0.956 and Bayesian had

0.964); the most inaccurate estimates were at larger

densities, which got worse using the behavior model

(Appendix B: Fig. B3).

Performance of SCR models compared to ad hoc

estimators

For the trapping grid, we found SCR model

performance was worse than the best-performing ad

hoc estimator (Mb and Mbh super-population estimates

with the full MMDM estimator). However, for the

trapping web data, the best-performing SCR model

(null) had comparable performance with the best-

performing distance model (uniform-cosine), except in

TABLE 2. Model performance attributes of the trapping grid and web density (D̂) and abundance
(N̂) estimation using a null spatial capture–recapture (SCR) model and a SCR model with a
behavioral effect.

Model and
summary statistics

ML SCR estimation Bayesian SCR estimation

Trapping grid Trapping web Trapping grid Trapping web

D̂ N̂ D̂ N̂ D̂ N̂ D̂ N̂

Null SCR

CI coverage (%) 45.45 45.45 60.00 60.00 45.45 45.45 60.00 60.00
RMSE (%) 176.82 724.06 30.70 121.26 154.94 653.16 41.66 175.99
RA (%) 27.74 27.29 17.01 16.12 28.59 28.61 20.08 20.08
CV (%) 18.25 18.01 12.28 10.93 23.38 23.10 13.03 13.03
RB (%) �2.85 �2.06 �15.03 �14.21 �11.94 �11.92 �19.07 �19.05

Behavior SCR

CI coverage (%) 72.73 72.73 40.00 40.00 72.73 72.73 50.00 50.00
RMSE (%) 94.70 379.38 72.91 300.87 105.88 441.49 87.34 370.98
RA (%) 22.75 22.27 19.68 18.80 25.33 25.33 24.33 24.31
CV (%) 17.72 17.49 14.54 14.31 22.40 22.40 42.00 42.00
RB (%) �11.49 �11.13 �18.28 �17.38 �21.22 �21.20 �24.33 �24.31

Note: Models are fitted using a maximum likelihood (ML) and a Bayesian approach. Summary
statistics are mean relative mean squared error (RMSE), accuracy (RA), precision (CV), and bias
(RB).

FIG. 3. Small-mammal density estimates (open circles) with 95% HPD intervals from two SCR models where traps were
arranged in a web: (a) null SCR, (b) behavior effect SCR. The x-axis indicates the population (1–11; see Table 1) and whether the
estimate is from a maximum-likelihood (designated with a) or Bayesian analysis (designated with b). The true density is indicated as
an ‘‘x’’ when included in the interval and a square when not.
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terms of coverage and RB, which were worse (Tables 2

and 3). Coverage was worse in all SCR analyses

compared with the ad hoc density estimators and

distance-sampling models (Tables 2 and 3). We did find

that SCR models had a lower RMSE, RA, and RB

compared to the half-MMDM estimator and the half-

normal distance-sampling model. SCR model CV was

similar or smaller than ad hoc estimators and distance-

sampling models, but the smaller variance estimates led

to poorer confidence interval coverage of the true

densities. Point estimates for the trapping web data

under the SCR null model were as accurate as the best-

performing ad hoc density estimators and distance-

sampling models (Appendix B: Fig. B3; Parmenter et al.

2003).

DISCUSSION

SCR models have advanced since the development of

the basic model and no longer have to assume

individuals distribute their activity according to a

circular home range. Two such models incorporate

landscape attributes through least-cost-path and re-

source selection (Royle et al. 2013a, c). However, many

CR studies will commonly preclude the use of these

more complex models due to relatively few individuals

detected and few spatial locations of individuals. These

models also require that landscape variables important

to animal movement can be identified and measured,

which can be difficult; this is especially true when

sampling occurs in relatively homogenous vegetation,

such as in this study. We believe the basic SCR model

will likely continue to be used more often than the

advanced models, as well as preferred over ad hoc

density estimators, given the appeal of SCR models’

coherent statistical framework. However, a certain

amount of caution should be considered based on our

analyses, given that the basic SCR model was often

overly precise, leading to only moderate frequentist

coverage, and on average underestimated density. This

is especially problematic given that the extent of

sampling, the number of traps deployed, and sampling

duration, coupled with double-tagging of individuals in

this study represents a best case scenario; small-mammal

capture–recapture studies commonly use less sampling

effort (fewer traps, smaller grids, shorter sampling time).

Given the empirical nature of this study, it is difficult

to determine how or if SCR model assumptions were

unmet and thus why SCR performance was sometimes

underwhelming. However, we offer some insights about

possible mismatches between SCR model assumptions

and basic animal ecology and published SCR simula-

tions. First, it is unlikely that the trapping layout or

number of traps were a limiting factor, as trap density

was high, the sampling layout proved to be larger than

the extent of individual movement, and inter-trap

distances were short enough to detect individuals at

multiple traps. It is possible that two of the core

assumptions of the basic model may be overly simpli-

fying; (1) that individual activity centers are randomly

distributed (i.e., independent) and (2) animal space-use

can be approximated with a simple detection function

where the spatial scalar (r) is assumed to be the same for

all individuals. Individuals are unlikely to be indepen-

dent of conspecifics due to territoriality or sociality. For

small mammals that share burrows or nests, their

activity centers may be completely dependent. In

addition, animal movement is a highly complex process

(Nathan et al. 2008); the necessary simplification of this

process due to limited spatial information leads to an

unrealistic assumption of a stationary circular home

range (White and Garrott 1990). Interspecific interac-

tions may also cause individuals to exhibit very different

patterns of space use, depending on their proximity and

the effect of these interactions (e.g., attraction or

repulsion). Another possibility is that the enclosure

walls may unnaturally impede dispersing individuals and

inflate density along the enclosure edges. If so, we would

expect to observe a peak of individuals in the outermost

ring of the sampling web, which was not the case.

Similarly, the outermost grid traps were 45 m from the

enclosure wall, and the means of full MMDM ranged

from 16.18 to 54.54 m, indicating that the effects of

enclosure walls at this distance were likely minimal.

Lastly, because we often found point and interval

TABLE 3. Density estimator summary attributes from Parmenter et al. (2003).

Summary
statistic

Trapping grid
Trapping web

distance estimation(M0) (Mh) (Mb) (Mbh)

Half-
MMDM

Full
MMDM

Half-
MMDM

Full
MMDM

Half-
MMDM

Full
MMDM

Half-
MMDM

Full
MMDM

Uniform
cosine

Half-normal
cosine

CI coverage (%) 80.0 100.0 70.0 90.0 90.0 100.0 90.0 100.0 100.0 100.0
RMSE (%) 500.5 165.0 1457.1 531.6 206.1 40.5 206.1 40.5 37.2 834.7
RA (%) 44.2 26.3 80.6 38.6 38.2 16.4 38.2 16.4 16.9 73.4
CV (%) 24.0 35.0 26.8 37.0 24.9 35.6 24.9 35.6 24.5 48.1
RB (%) 44.2 �3.3 80.6 22.3 38.2 �8.5 38.2 �8.5 �6.5 67.3

Notes: Model notation for traditional capture–recapture models: constant detection probability (M0), heterogeneous detection
probability (Mh), behavioral effect on detection probability (Mb), and behavior and heterogeneity effect on detection probability
(Mbh). Summary statistic abbreviations are as in Table 1. For comparison with spatial capture–recapture models, we selected
density estimators that consider similar variation in detection and performed relatively well. MMDM stands for mean maximum
distance moved of individuals studied.
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estimates underestimated density and abundance, this

suggests additional heterogeneity in detection that was

not accommodated. We attempted to address this

heterogeneity through a mixture-modeling approach

(Pledger 2000), but limited sample size led to generally

unreliable results, and models were often unable to

converge. Empirical studies have suggested that un-

modeled variation in SCR models can lead to overly

precise and biased estimates (Howe et al. 2013), as seen

in our results; individual biological variation in r, such
as due to sex differences in ranging patterns, is likely to

negatively bias density estimates (Tobler and Powell

2013). The basic SCR model estimates also have been

shown to be negatively biased when not accounting for

movement due to resource use on the landscape (Royle

et al. 2013a), as well as when home ranges are

asymmetric (Ivan et al. 2013). Heterogeneity in detection

among individuals will continue to be a challenge in

population estimation because of the many influencing

factors. Incorporating the effects of space use is logical,

but not the only and perhaps sometimes not the

dominating factor influencing detection; the best re-

course is to remove the effects of heterogeneity by

detecting most of the population many times (Gerber et

al. 2014).

Compared to passive detectors (e.g., camera traps),

live-trapping will commonly lead to less spatial infor-

mation about individual movement due to trapped

individuals being confined. This is especially true for this

study, in which the sampling duration was much shorter

compared to studies of larger mammals sampled using

passive detectors (Gerber et al. 2012). The potential for

more spatial information from alternative trapping

methods may lead to more reliable estimates than found

in this study. However, modeling additional individual

heterogeneity beyond that accommodated by SCR

models, such as using finite mixtures, will also require

a reasonable number of unique individuals to be

detected; this also will be affected by sampling methods.

We found that data from the trapping web configu-

ration led to more accuracy but consistently negative

bias, whereas the trapping grid data led to reduced

accuracy but also reduced relative bias. With regard to

relative accuracy, the null SCR model performed

similarly to the best-performing distance-sampling

model. Using the trapping grid data, the SCR models

performed better than using half-MMDM, but worse

than using full MMDM. Among the comparative

empirical studies, researchers have generally found

SCR models produce lower estimates than CR models

with ETA estimators, of which the SCR estimates are

taken as superior (Obbard et al. 2010, Gerber et al. 2011,

Noss et al. 2012), perhaps due to a higher risk of making

poor conservation/management decisions when overes-

timating compared to underestimating population size.

However, our findings do not support this claim. We

found SCR models are on average lower than true

values, but not as bad as the higher estimates of half-

MMDM, while full MMDM was on average only

slightly lower than the true values. Full MMDM has

often been evaluated in simulation studies, producing

mixed results, and should not be considered generally

applicable to all study designs. In comparing a known

tiger population to density estimates, Sharma et al.

(2010) found the full MMDM and the ML SCR density

estimates to be comparable and close to the true value.

In a simulation study of jaguar density estimates, full

MMDM was found to be similar to SCR estimates

across a wide range of trapping array sizes (Tobler and

Powell 2013). In contrast, another simulation study that

examined alternative space-use patterns by individuals

PLATE 1. (Top) the enclosure fence, (middle) the trapping
web center from the north, and (bottom) two researchers
processing small mammals. Photo credits: R. R. Parmenter.
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found SCR estimates to generally outperform the full

MMDM estimator (Ivan et al. 2013).

Moving forward, we suggest two developments are

needed. First, more SCR simulations are needed to

evaluate model assumptions explicitly; future simulation

work should aim to explore realistic animal movement

as the basis for generating data when applied to SCR

models (e.g., Ivan et al. 2013) and consider dependency

among individuals’ movements. Second, development of

formal goodness-of-fit (GOF) tests are needed. There

has been some preliminary work in this direction

(Borchers and Efford 2008, Royle et al. 2013b), but no

assessment as to their expected performance. Reliable

GOF tests are especially needed for small sample sizes,

in which low-quality data may often lead to a failure to

detect a departure from model assumptions.

The parallel development of likelihood and Bayesian

SCR models has led many ecologists to analyze their

data using both inferential paradigms, without clear

reasoning. From a practical perspective, the similarity of

estimates and performance between the ML and

Bayesian approaches does not support the costs and

challenges to practitioners not familiar with Bayesian

methods in fitting the basic Bayesian SCR model (Efford

2011). There is of course the philosophical difference

between the paradigms, which is independent of the

practical argument and will depend solely on the

practitioner’s inferential preference. Bayesian inference

produces valid posterior distributions for any sample

size and provides a complete summary of the state of

belief about unknown quantities, which is why some

have suggested Bayesian SCR models are more valid for

small sample data than likelihood models (Noss et al.

2012, Thompson et al. 2012, Royle et al. 2013b).

However, it is important for ecologists less familiar with

Bayesian methods to be aware that Bayesian inference is

conditional on the available data, priors, and the model

fitted, as well as assuming proper posterior convergence

has been reached. Bayesian models do not guarantee

frequentist coverage of truth or unbiasedness. Ecologists

interested in Bayesian model fitting should be aware of

convergence assessment, especially when dealing with

small sample sizes and relatively uninformative priors;

even still, improper posterior distributions are of

concern and often difficult to assess (Link 2013). If

researchers are interested in point and interval estimates,

our results, along with simulation support of small

sample size (Efford 2011), suggest the asymptotic

argument against likelihood methods for SCR is moot.
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