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Abstract. Resource selection is often studied by ecologists interested in the environmental
drivers of animal space use and movement. These studies commonly produce spatial predic-
tions, which are of considerable utility to resource managers making habitat and population
management decisions. It is thus paramount that predictions from resource selection studies
are accurate. We evaluated model building and fitting strategies for optimizing resource selec-
tion function predictions in a use-availability framework. We did so by simulating low- and
high-intensity spatial sampling data that respectively predicted study area and movement-
based resource selection. We compared one of the most commonly used forms of statistical
regularization, Akaike’s Information Criterion (AIC), with the lesser used least absolute
shrinkage and selection operator (LASSO). LASSO predictions were less variable and more
accurate than AIC and were often best when considering additive and interacting variables. We
explicitly demonstrate the predictive equivalence using the logistic and Poisson likelihoods and
how it is lost when the available sample is too small. Regardless of modeling approach, inter-
preting the sign of coefficients as a measure of selection can be misleading when optimizing for
prediction.

Key words: AIC; habitat selection; LASSO; movement ecology; optimal; prediction; regularization; re-
source selection function; RSF; spatial ecology.

INTRODUCTION

An understanding of habitat selection is integral to
the study of animal ecology and evolution. By tracking
individual animal movements, we can understand the
behavioral processes by which animals choose locations
to maximize fitness (McLoughlin et al. 2010). This selec-
tion process subsequently provides important insights
into population and community dynamics (Morris
2003). Advances in animal tracking data (e.g., global
positioning system radio collars) have revolutionized
our ability to assess habitat selection patterns. The most
common method for examining habitat selection from
animal tracking data is the resource selection function
(RSF), fit in a use-availability framework (Manly et al.
2002, Hooten et al. 2017). Under this framework, animal

locations (the used sample) and their underlying envi-
ronmental covariates (e.g., land cover type) are con-
trasted with random locations and their underlying
environmental covariates that were considered available
to the animal (the available sample).
The available sample can be defined as the spatial

region an animal could have accessed from each used
location. In low-intensity tracking studies (e.g., a few
locations per day), it is reasonable to assume highly
mobile species (e.g., large mammal or bird) could tra-
verse their home range or larger between used locations.
The key word being could, rather than did or likely.
These studies are common, as researchers favoring long
tracking periods, perhaps for estimating demographic
processes, can extend battery life of telemetry devices by
acquiring fewer locations per day. In contrast, high-in-
tensity tracking studies (e.g., 1 location/30 min) acquire
many temporally correlated used locations thereby limit-
ing the available sample to the area along the path of
used locations; the available sample may be estimated
based on a movement process that accounts for this

Manuscript received 6 March 2019; revised 7 October 2019;
accepted 12 November 2019. Corresponding Editor: Brett
McClintock.

3 E-mail: bgerber@uri.edu

Article e02953; page 1

Statistical Reports
Ecology, 101(3), 2020, e02953
© 2019 by the Ecological Society of America

https://orcid.org/0000-0001-9285-9784
https://orcid.org/0000-0001-9285-9784
https://orcid.org/0000-0001-9285-9784
info:doi/10.1002/ecy.2953
mailto:
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fecy.2953&domain=pdf&date_stamp=2020-02-14


correlation (Johnson et al. 2008, Hooten et al. 2017).
Importantly, how the available sample is defined dictates
the inference on the scale of resource selection
(Northrup et al. 2013, Hooten et al. 2017, Gerber et al.
2018).
The RSF can be understood as a spatial point process

(Hooten et al. 2017), in which the ith used location (li;
consisting of x-y coordinates in space) is a realization
from a weighted probability distribution, li � ½lijb; h�,
such that

½lijb; h� �
g x liÞ; bðð Þf li; hð ÞR
g x liÞ; bðð Þf li; hð Þdl ; (1)

where we interpret g x liÞ; bðð Þ (i.e., the RSF) as how ani-
mals preferentially choose resources based on selection
coefficients (b) and what is considered available to them
(f li; hÞð ) based on availability coefficients (h). Note, the
denominator integrates over the spatial region that is
available to the animal for all used locations and when
the availability is uniform over this region, h drops out
of this equation (Hooten et al. 2017). Commonly, the
RSF is defined using the exponential form as g x liÞ;ðð
bÞ � ex

0 lið Þb; but also sometimes using the logistic form
(Lele and Keim 2006) as, g x liÞ; bðð Þ � ex

0 lið Þb=
ð1þ ex

0 lið ÞbÞ. Resources chosen in greater or lesser pro-
portion to their availability are considered selected and
avoided, respectively. The main difference is that the
logistic form (also called the resource selection probabil-
ity function) makes inference to the probability of selec-
tion and relies on strict parameteric assumptions that are
not robust (Hastie and Fithian 2013), while the exponen-
tial form makes inference to the relative density of used
points, interpreted as the relative intensity of selection,
which is proportional to the probability of selection. The
latter is a relative intensity because the number of possible
locations is unknown or realistically infinite under a
continuous process, such that the intercept reflects the
observed sample size (Warton and Shepherd 2010).
Most researchers do not fit the weighted distribution

directly (but see Lele and Keim 2006, Hooten et al.
2017, Gerber et al. 2018). Rather, it is more common to
make inference on the exponential form of the RSF via
approximation using generalized linear modeling (i.e.,
logistic or Poisson regression) with familiar and available
software (Northrup et al. 2013), such as via the glm()
function in R. Both logistic and Poisson regression can
provide equivalent inference on the selection coefficients
(b) when certain conditions are met (Aarts et al. 2012,
Fithian and Hastie 2013); namely, the number of grid
cells in the Poisson regression and the number of loca-
tions in the available sample of the logistic regression
needs to be very large (Northrup et al. 2013) to ensure
the integral in the denominator of Eq. 1 is approximated
well (Warton and Shepherd 2010). Furthermore, the
logistic regression is improved when the available sample
is infinitely weighted (Fithian and Hastie 2013), which in

practice means weighting these data by a large number
(e.g., 1,000) and weighting the used sample by one.
The objectives of resource selection studies are typi-

cally focused on evaluating ecological and conservation
driven hypotheses (e.g., Chetkiewicz and Boyce 2009,
McLoughlin et al 2010) to infer how spatial factors
influence habitat selection. However, the practical utility
of an RSF for many resource managers and conserva-
tionists is the spatially mapped predictions produced
from these models (Morris et al. 2016), which can influ-
ence on-the-ground management decisions. Resource
selection predictions are used for land-use planning
(Coates et al. 2016), managing populations (Hebblewhite
et al. 2011, Northrup et al. 2016), and more (Morris
et al. 2016). Because RSF predictions are widely relied
upon in conservation and management decision making,
it is of paramount importance to obtain accurate predic-
tions.
Resource selection studies typically adopt an explana-

tory modeling process (Shmueli 2010, Gerber et al.
2015) aimed at inferential model building and estimation
based on a relatively small set of hypotheses and associ-
ated covariates (Burnham and Anderson 2002). Specifi-
cally, models are often a limited combination of
potential covariates (typically only assumed to affect
selection in an additive manner) compared using
Akaike’s Information Criterion (AIC; Boyce et al.
2002). Since many covariates are expected to have small
effects or are collinear with other covariates, there are
many potential variables that are never synthetically
considered within a model comparison framework. Mul-
ticollinearity is a well known estimation issue in ecology
(Graham 2003), which is prevalent in resource selection
studies that often rely on remotely sensed data to pro-
duce many covariates from the same source products.
Ecologists commonly ameliorate multicollinearity by
excluding variables from a model or model set. Main-
taining a small set of models fits into the hypothetico-de-
ductive scientific framework, as it focuses on inference
to specific and hypothesized factors driving resource
selection. As such, variables are often not considered so
as to maintain a single model or a small set of models,
which is encouraged when using information criterion
(Burnham and Anderson 2002). Prediction within a
resource selection study is usually considered apart from
model building and estimation to evaluate a final
selected model (Boyce et al. 2002).
We contend that viewing model fitting and selection in

a statistical regularization framework has benefits when
seeking to optimize resource selection models for predic-
tion. Regularization is a statistical technique that seeks
to optimize the generalizabiltiy of a model by trading off
bias and variance (Bickel and Li 2006). Regularization
encompasses most forms of model selection commonly
used in ecology, which in, resource-selection studies, is
the use of information criterion and specifically, AIC
(Boyce et al. 2002). Information criterion is used to
evaluate discrete model sets and relies on asymptotic
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assumptions to justify predictive performance (Stone
1977). In contrast, alternative regularization techniques
use a continuous model selection process from a global
to an intercept-only model by constraining estimated
coefficients via a shrinkage parameter that can be opti-
mally chosen via cross-validation, often leading to
improved prediction performance (Hastie et al. 2009,
Gerber et al. 2015). Continuous model selection can also
be computationally more efficient than evaluating all
possible subsets of discrete models, which can be a pro-
hibitively large number of models.
We highlight one of the more common continuous

regularization techniques in applied statistics, the least
absolute shrinkage and selection operator (LASSO;
Tibshirani 1996). Notably, LASSO has variable selection
properties and can remove effects of variables by con-
straining them to be zero, which gives the optimal model
an additional amount of interpretability over other tech-
niques (e.g., ridge regression; Hastie et al. 2009). Fur-
ther, LASSO can accommodate the numerical issues of
moderate multicollinearity, maintaining good predictive
performance (Dormann et al. 2013), and thus does not
necessitate removing partially collinear variables from
models or model sets. Unless variables are completely
correlated, there is potential information that could be
useful to improve predictions; such information is lost
when only one set of collinear variables is considered.
Simply, LASSO is an integrated model-selection and
estimation technique that leverages the power of cross-
validation to identify a set of coefficients that optimizes
predictive performance. We focus on LASSO because it
identifies sparse models that may be useful for inference
on resource selection, as well as optimal prediction.
We can compare LASSO and AIC by their optimiza-

tion routines, in which we estimate model parameters
(e.g., b) by minimizing {model lack of fit + k 9 model
complexity}, where k is a penalization or shrinkage fac-
tor. Model lack of fit for both is the deviance
(�2� log L bð Þð ÞÞ. While AIC defines k = 2 based on
theory, LASSO allows this value to be chosen, typically
using cross-validation. Further, AIC considers model
complexity as the number of parameters (q = 0) and
includes the intercept (a = 1), while LASSO measures
the number and magnitude of the absolute value of
parameters (q = 1) and does not penalize the intercept
(a = 2), such that the optimization argument for estimat-

ing K total parameters is argminb2RK

(
�2� log

L bð Þð Þ þ k�PK
k¼a bkj jq

)
. Note, q = 2 and a = 2 defines

ridge regression. Both LASSO and ridge have natural
Bayesian interpretations (Hastie et al. 2009, Gerber
et al. 2015). For more specifics, see Bickel and Li (2006)
and Hastie et al. (2009).
We considered two types of common animal telemetry

data for predicting resource selection: low- and high-

intensity individual sampling. Low-intensity sampling
data represent individuals that are tracked infrequently
(relative to their potential rate of movement), such that
we assume no temporal correlation in sequential used
locations, and inference to selection is over a large spa-
tial region (i.e., home range) that is considered available.
High-intensity sampling data represent individuals
tracked frequently where used locations are realizations
from an animal movement process with temporal corre-
lation between sequential used locations and the avail-
ability is defined by estimated step lengths and turning
angles. We focus on individual-level analyses as they are
the fundamental unit of interest in resource selection
studies and selection is expected to vary by individual
(Montgomery et al. 2018). We compared LASSO and
AIC using two model building strategies, only additive
combinations of variables, and additive and pairwise
interactions of all variables. Further, while statistical the-
ory has clarified the equivalence between the logistic and
Poisson approximation of the weighted distribution
(Warton and Shepherd 2010, Fithian and Hastie 2013),
there has yet to be a simple comparison of models with
equivalent covariates fit with both likelihoods that is
approachable for practitioners; as such, using the low-in-
tensity data we compared all model building and fitting
strategies using Poisson and logistic linear models. Last,
we compared empirical results from individual move-
ment-based RSF analyses optimized by AIC or LASSO,
using location data from 44 mule deer (Odocoileus hemi-
onus) in Colorado (Northrup et al. 2015).

MATERIALS AND METHODS

Simulation

We compared model building and fitting strategies in
a simulation study where the true process that we seek to
predict is known. Specifically, we simulated low- and
high-intensity individual used locations using an inten-
sity function that combines additive and pairwise inter-
actions of categorical ðxi1; xi2; xi3Þ and continuous
variables xi4; xi5; xi6; xi7; xi8; xi9; xi10ð Þ with varying effect
sizes (b � ½1; 2; 1; 1;�1; 0:5;�0:5; 0:5;�2; 0:5; 2;�2;�2;
2�0 ), as

ex
0 lið Þb � expðb0xi1 þ b1xi2 þ b2xi3 þ b3xi4 þ b4xi5

þ b5xi6 þ b6xi7 þ b7xi8 þ b8xi9 þ b9xi10
þ b10 xi4 � xi7ð Þ þ b11 xi8 � xi10ð Þ þ b12
xi2 � xi7ð Þ þ b13 xi3 � xi7ð ÞÞ:

(2)

The categorical variable mimics land-cover type with
three levels (e.g., forest, shrub, and grassland), while the
continuous variables mimic landscape features, such as
elevation, ruggedness, etc. All spatial variables (x) were
simulated as continuous Gaussian random fields
(Appendix S1: Fig. S1). We simulated a second set of
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variables, w, that were considered as potential covariates
hypothesized to influence resource selection, but were
not directly related to the true RSF; w consisted of one
categorical (three levels) and eight continuous variables
(Appendix S1: Fig. S2). The continuous variables of w
and x are minimally and maximally correlated (r)
from �0.24 to 0.80 (Appendix S1: Fig. S3). As such, we
are considering a common issue, in that many spatial
variables are hypothesized and some or many of those
are naturally or circumstantially correlated with each
other.
For the low-intensity sampling simulation, we used

ex
0 lið Þb to simulate 2,000 data sets from an inhomogenous

Poisson point process that ranged in the number of used
locations from 150 to 350,000, such that the proportion of
the landscape used at least once ranged from approxi-
mately 0 to 100%. For the high-intensity sampling, we
simulated used locations from an equivalent intensity
function using a movement-based process following the
approach outlined by Muff et al. (2019) (see
Appendix S2). However, we redefined the habitat variables
of x and w to make them more patchy and thus were
appropriately encountered when simulating animal move-
ments (Appendix S1: Fig. S4). We varied the number of
total steps (used sample) by 100, 500, 1,000, 2,000, 5,000,
and 10,000. At each step, we predicted 100 random loca-
tions as the available sample for each used location. For
each step size, we simulated 200 individual animal tracks;
all simulations and model fitting was done in R (version
3.6.0, RCore Team, 2019); code can be found in Data S1.

Model building and fitting

We fit models to each simulated data set using model
building strategies that included either a model set with
all combinations of additive covariates or all combina-
tions of additive and pairwise interactions of covariates.
Model fitting strategies included either selecting an opti-
mal predictive model via AICc (AIC corrected for small
sample size; Burnham and Anderson 2002) or LASSO.
For each model building strategy, we considered all x
and w covariates, except for x4, which we exclude to rep-
resent an important variable that was not hypothesized
or could not be appropriately measured, and thus can
not be included in a model set. We also fit each data set
using the correctly specified model (i.e., exact set of
covariates and their interactions used to simulate the
data) as a benchmark for the best case for each strategy
and data set. All continuous covariates were centered
and standardized to a mean of zero and standard devia-
tion of one. For modeling the low-intensity data using
logistic regression, the available sample was the entire
study area with each zero weighted by 1,000. We demon-
strated the predictive equivalence of the Poisson and
logistic likelihoods by comparing predictions for all
combinations of model building and fitting strategies
and how it is lost by reducing the available sample using
the logistic likelihood to 1000 random samples that are

not weighted. For the high-intensity sampling data, we
fit models using conditional logistic regression where
each strata corresponds to a single used location that is
matched with a set of corresponding available locations
(Northrup et al. 2013). Mapped RSF predictions indi-
cate the relative intensity of selection of a location condi-
tional on all locations on the map being equally
available to the animal.
For strategies using AICc, we randomly removed colli-

near variables with a correlation >0.6 to determine the
global model before evaluating all possible subsets via
an automatic model selection routine in the R package
glmulti (Calcagno and Calcagno 2010) for logistic and
Poisson analyses and in the package MuMIn for condi-
tional logistic regression analyses. Predictions were
model averaged using Akaike weights (Burnham and
Anderson 2002). For strategies using LASSO, we did
not remove collinear variables and regularized coeffi-
cients via a complete set of shrinkage parameters (k); we
evaluated each shrinkage parameter via 10-fold cross-
validation using the average deviance (�2�log L bð Þð Þ) of
the left out data across all folds. Note, for conditional
logistic regression the left out folds occurred by strata.
Logistic and Poisson modeling with LASSO and cross-
validation was done using the R package glmnet (Fried-
man et al. 2010) and conditional logistic modeling was
done using clogitL1 (Reid and Tibshirani 2014). See
Appendix S2 for additional details on cross-validation.
We evaluated RSF predictions against the true RSF in

three ways. First, we computed Kendall’s rank correla-
tion coefficient (s), which measures the similarity of the
ordering of continuous quantities by comparing concor-
dant and discordant pairs. A high value of s indicates
that two continuous quantities have a similar ranking
order. It does not guarantee that the relative difference
between similarly ranked predictions and the true values
are the same. Second, we computed the coefficient of
determination (R2), which measures the proportion of
the variance in the true values that is predictable from
the RSF predictions. Third, we computed the mean
absolute error (MAE) between the true and predicted
RSF values after standardizing them to be between 0
and 1. A good model fitting and selection strategy
should have a high s and R2, a low MAE, and is consis-
tent within a sample size, such that these measures vary
little. We plot results by sample size when considering all
RSF predictions together and for the low-intensity
results we also binned the true RSF values into quartile
groups of low to high selection (0–25%, 25–50%, 50–
75%, 75–100%) and calculated s, R2, and MAE with
their corresponding RSF predictions. Binning predic-
tions is commonly done when creating resource selection
maps for managers (Morris et al. 2016) and clarifies
which values are most difficult to predict. Last, we inves-
tigated the inferential reliability in interpreting estimated
coefficients as selection and avoidance by evaluating the
proportion of coefficients with the correct sign (+, 0, �)
across simulations within each strategy.
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Empirical case study

We used location data from 44 mule deer in the
piceance basin of Colorado to fit movement-based RSF
models optimized using AICc or LASSO. Used locations
by individual ranged from 240 to 330 and each used
location was matched with 300 available locations in a
temporally dynamic manner following the process out-
lined by (Northrup et al. 2015). We specifically com-
pared predictions using AICc with additive variables and
LASSO with additive and pairwise interactions. We eval-
uated predictive differences by measuring s, R2, and the
mean standard deviation of the difference between pre-
dictions. Further, we evaluated within-sample predictive
performance using the ratio in the deviance explained by
the LASSO strategy relative to the AICc strategy; values
>1 indicate improved prediction using LASSO. Lastly,
we evaluated out of sample predictive performance by
withholding 10% of each individuals data and fitting the
remaining data with the LASSO and AICc strategies.
Specifically, we measured the mean individual propor-
tional change in deviance; values >1 indicate improved
prediction using LASSO.

RESULTS

We found that model building (additive or additive
and interactions) and fitting strategies (LASSO or AICc)
led to important differences in predicting resource selec-
tion for both low- and high-intensity modeling
approaches (Figs. 1–3). First, preliminary investigations
determined that AICc with all possible additive and
pairwise interactions led to inconsistent results
(Appendix S1: Figs. S5–S7) that were rarely more

accurate than using LASSO with pairwise interactions
and often less accurate than using AICc or LASSO with
only additive combinations of variables. Thus, due to the
computational issues of fitting >1 billion models per
data set we removed this approach from further consid-
eration. Across all strategies, we found that using
LASSO always led to more accurate and consistent
results (i.e., low variation in s, R2 and MAE for a given
sample size; Figs. 2, 3) than using AICc. The combina-
tion of randomly removing collinear variables, the insta-
bility of comparing many models using AICc, and the
lack of explicit predictive evaluation via cross-validation
led to the observed high variability in prediction agree-
ment for similar sample sizes. Considering pairwise
interactions with LASSO generally improved s, R2, and
MAE compared to only additive models, except at the
smaller sample sizes. We also found that optimizing for
prediction can lead to poor inference on the selection
and avoidance of resources when interpreting the sign of
estimated coefficients when modeling low- or high-inten-
sity sampling data (Appendix S1: Figs. S8, S9).
We found that modeling low-intensity tracking data

using a large weighted available sample for the logistic
likelihood produced equivalent predictions as when
using the Poisson likelihood (Fig. 2). The exception was
a small, but consistent difference in predictions between
likelihoods when using LASSO with additive and pair-
wise interactions. Predictive equivalence between likeli-
hoods breaks down substantially for all model fitting
strategies when the available sample is too small
(Appendix S1: Figs. S10, S11). Notably, fitting the cor-
rect structural model with too small available sample
reduced s up to 0.23, R2 up to 0.22, and increased MAE
up to 0.17.

FIG. 1. The true resource selection function (RSF) and exemplars of RSF predictions by varying the model building and fitting
strategies for simulated (a) low-intensity and (b) high-intensity sampling data, and (c) comparative predictions from three mule deer
(row) from the Piceance Basin in Colorado, USAwith Akaike's information criterion (AIc) predictions in the first column and least
absolute shrinkage and selection operator (LASSO) predicitions in the second column.
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FIG. 2. Measures of agreement between the true RSF and predictions from modeling low-intensity sampling data using logistic
(squares) and Poisson likelihood (circles) by sample size across model building and fitting strategies. Agreement is measured by
Kendall's s, R2, and mean absolute error. For logistic models, the available sample were all locations of the landscape weighted by
1,000. Note that the y-axis is different for the bottom figure; Prop (%) is the proportion of the landscape used at least once; add,
additive; int, interaction.
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By binning the low-intensity tracking results, we
found that low (0–25%) and high relative intensity of
selection (75–100%) were universally easier to predict
(Figs. S12-S14). Low-intensity of selection predictions
using LASSO produced a s ranging from 0.62 to 0.70
for additive only and 0.70 to 0.82 for additive and pair-
wise interactions. The corresponding R2 ranged from
0.68 to 0.78 for additive models and 0.85 to 0.90 for
additive and interaction models, while the MAE ranged
from 0.035 to 0.045 for additive models and 0.01 to 0.02
for additive and pairwise interactions. The medium rela-
tive intensity of selection categories (25–50% and 50–
75%) were generally comparable to one another and
much worse in terms of s, R2 and MAE relative to the
high and low bins (Figs. S12-S14).
Empirical deer RSF modeling indicated that predic-

tions were very different when optimizing using AICc

with additive variables and LASSO with additive and
pairwise interactions (Fig. 1, Appendix S1: Figs. S15–
S20). Across individuals, the mean s, R2, and standard
deviation of prediction difference was 0.56 (range, 0.36–
0.70), 0.37 (range, 0.07–0.71), and 2.70 (range, 0.29–
21.82), respectively. Comparing within-sample predictive
performance, the LASSO always outperformed the
AICc strategy by improving the deviance explained by a
mean of 2.60 times (range, 1.59–5.40) across individuals.
Comparing out-of-sample predictive performance, the
LASSO generally outperformed the AICc strategy by

improving the deviance by a mean of 1.75 times (range,
0.78-6.15) across individuals.

DISCUSSION

We found that common model building strategies for
RSF analyses (models of additive variables compared
using AIC) led to highly inconsistent and suboptimal
predictions. A substantial gain in predictive accuracy
and reliability can be made by adopting a continuous
statistical regularization framework that leverages the
power of cross-validation and efficient and stable com-
putational algorithms. LASSO improved predictions in
terms of s, R2, and mean absolute error across all sample
sizes for modeling low- and high-intensity sample data.
Further, we found that considering all pairwise-interac-
tions with LASSO led to improved predictions, despite
the increased estimation complexity. Perhaps an impor-
tant but unsurprising finding was that predictions were
best for the most strongly selected and avoided areas
when maps were binned. This is critical, because many
studies seek to identify habitat vs. non-habitat for spe-
cies, which requires high resolution at the mid-ranges of
the RSF, which might be difficult to achieve.
Our results highlight the equivalence between the

logistic and Poisson likelihoods in approximating the
weighted distribution, which has been discussed else-
where, but is perhaps not appreciated by practitioners.

FIG. 3. Measures of agreement between the true RSF and predictions from modeling high-intensity sampling data using condi-
tional logistic regression by sample size across model building and fitting strategies. Agreement is measured by Kendall's s, R2, and
mean absolute error. The x-axis labels: CM is “Correct Model”, “L-Add” is LASSO with additive variables, “L-Int” is LASSO with
additive and pairwise interactions, and “AIC-Add” is Akaike's Information Criterion with additive variables.
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When using the logistic likelihood, care needs to be
taken to use a large available sample (Northrup et al.
2013) that is weighted with a large number (Fithian and
Hastie 2013) to ensure a proper approximation of the
weighted distribution (Eq. 1). Otherwise, coefficients
and predictions could be poor (example code is provided
in Data S1). Our work also highlights an important find-
ing of Warton and Shepherd (2010), that because RSFs
are point process models and can be fit in a generalized
linear modeling framework, all the tools available to fit-
ting such models can be used. This includes the efficient
and robust algorithms that have been developed for con-
tinuous statistical regularization.
There are many regularization techniques that could

be highly useful in optimizing RSFs for predictive per-
formance. One alternative to LASSO is ridge regression,
which also shrinks coefficients continuously, can accom-
modate extreme multicollinearity, but does not have
variable selection properties (Hastie et al. 2009). Ridge
shrinks larger coefficients more than smaller ones, while
LASSO shrinks them uniformly. LASSO also tends to
remove one of two highly correlated variables, while
ridge will shrink their coefficients towards one another.
Which performs better depends on the number of vari-
ables considered, the true distribution of small and large
effects, and whether there are many hypothesized vari-
ables that have no effect (Hastie et al. 2009). The gener-
alization of ridge and LASSO is the elastic net (Zou and
Hastie 2005). Elastic net can accommodate extreme mul-
ticollinearity and lead to sparse interpretable models;
however, for our context we found LASSO and elastic
net to perform equivalently (Appendix S2). Flexible
cross-validation along with ridge, LASSO, elastic net,
and more are available in the R language and can be
implemented using the glmnet package (Friedman et al.
2010); example code is provided for each in Data S1. For
researchers that want to relax assumptions of linearity,
generalized additive models (Hastie et al. 2009) or
boosted regression trees (Elith et al. 2008) are an option.
It is important to recognize the potential inferential

costs of an optimal predictive modeling approach with
correlated variables. We found among all simulation sce-
narios that the sign of estimated coefficients are not reli-
able in terms of evaluating whether a resource is being
selected or avoided. There is a necessary trade-off
between prediction and understanding when modeling,
such that a single modeling approach will unlikely be
optimal for both purposes. When use of spatial predic-
tions from RSFs for conservation and management deci-
sion making is a priority, regularization techniques that
optimize predictions using cross-validation should be
employed.
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SUPPORTING INFORMATION

Additional supporting information may be found in the online version of this article at http://onlinelibrary.wiley.com/doi/
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