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Abstract. Conservation and management decision making in natural resources is challenging due
to numerous uncertainties and unknowns, especially relating to understanding system dynamics.
Adaptive resource management (ARM) is a formal process to making logical and transparent recur-
rent decisions when there are uncertainties about system dynamics. Despite wide recognition and calls
for implementing adaptive natural resource management, applications remain limited. More common
is a reactive approach to decision making, which ignores future system dynamics. This contrasts with
ARM, which anticipates future dynamics of ecological process and management actions using a
model-based framework. Practitioners may be reluctant to adopt ARM because of the dearth of com-
parative evaluations between ARM and more common approaches to making decisions. We compared
the probability of meeting management objectives when managing a population under both types of
decision frameworks, specifically in relation to typical uncertainties and unknowns. We use a popula-
tion of Sandhill Cranes as our case study. We evaluate each decision process under varying levels of
monitoring and ecological uncertainty, where the true underlying population dynamics followed a
stochastic age-structured population model with environmentally driven vital rate density dependence.
We found that the ARM framework outperformed the currently employed reactive decision frame-
work to manage Sandhill Cranes in meeting the population objective across an array of scenarios. This
was even the case when the candidate set of population models contained only na€ıve representations
of the true population process. Under the reactive decision framework, we found little improvement in
meeting the population objective even if monitoring uncertainty was eliminated. In contrast, if the
population was monitored without error within the ARM framework, the population objective was
always maintained, regardless of the population models considered. Contrary to expectation, we
found that age-specific optimal harvest decisions are not always necessary to meet a population objec-
tive when population dynamics are age structured. Population managers can decrease risks and gain
transparency and flexibility in management by adopting an ARM framework. If population monitor-
ing data has high sampling variation and/or limited empirical knowledge is available for constructing
mechanistic population models, ARM model sets should consider a range of mechanistic, descriptive,
and predictive model types.

Key words: adaptive management; age structured; decision theory; Markov decision process; optimal decision;
population dynamics; population management; population monitoring; Sandhill Crane; stochastic dynamic
programming.

INTRODUCTION

Natural resource managers routinely make decisions in
the face of many uncertainties (Holling 1978, Kendall 2001,
Regan et al. 2002). These decisions are often aimed at
manipulating ecological systems, as a means to reach a
specific state and/or to extract value from the system (e.g.,
non-consumptive or consumptive utility; Holling 1978).
Ecological system dynamics are highly complex and thus
making a decision that will lead to meeting objectives can be
complicated (Holling 1978, Kendall 2001). Common sources
of uncertainty include understanding of fundamental system
processes, the effect of management actions on system pro-
cesses, and even the current state of the system.

Recurrent decisions add additional complexity because
current decisions can affect the future state of the system and
thus future decision making (Williams et al. 2007). However,
recurrent decision making also enables learning about system
processes while managing; learning explicitly decreases uncer-
tainties associated with management, thus improving future
decisions (Williams et al. 2007, Williams 2011a). Considering
current and future decisions simultaneously with uncertain
system dynamics, makes the decision process highly unintu-
itive and can benefit from a formal optimal decision process
(Williams 2011a). The paradigm that outlines the process of
making recurrent decisions in the face of uncertainties, with
respect to explicit objectives and constraints, is adaptive
resource management (ARM; Holling 1978, Walters 1986).
Adaptive resource management aims to recognize multiple
types of uncertainties, such as monitoring uncertainty and
partial controllability, but is primarily to improve future deci-
sions by reducing uncertainty regarding system dynamics.
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Adaptive resource management is a special case of struc-
tured decision making (Williams et al. 2007), which is a gen-
eral framework for making informed decisions through a
logical and transparent process (Gregory et al. 2012, Gerber
et al. 2017). Adaptive resource management’s appeal is its
evidence-based approach to management (Walker 1998,
Sutherland et al. 2004, Westgate et al. 2013). Despite much
support for ARM and calls for its implementation (U.S.
NABCI Committee 2007, Williams et al. 2007, Wilson and
Woodraw 2009), operational programs are uncommon (but
see, Johnson et al. 1997, McGowan et al. 2015), but likely
growing (Gannon et al. 2013, Westgate et al. 2013). One
reason for the slow adoption or even resistance to ARM,
and model-based decision making in general, could be that
managers, stakeholders, and researchers desire explicit
demonstrations that compare ARM to current management
strategies to better understand realistic expectations (Hall
and Fleishman 2010). Theoretical expectations are less
meaningful than realistic demonstrations when making deci-
sions about a public or valued resource.
Adaptive management (as well as other model-based

dynamic decision approaches) is an anticipatory approach,
based on explicit predictions of system responses to man-
agement actions. A more common management strategy in
natural resource is a reactive one, in which a decision (e.g.,
sport harvest or area closures due to breeding) is based on
the current observed state of the system (e.g., population
size) and does not formally evaluate trade-offs between
decisions made immediately and those made in the future
(Martin et al. 2009). Two common reactive strategies
include taking conservation actions if the finite rate of pop-
ulation change (k) is estimated to be <1.00 for a threatened
animal population, or hunting of a game species is
restricted or closed if the population size falls below a pop-
ulation objective threshold. In contrast, ARM takes an
anticipatory strategy to balance trade-offs between deci-
sions over some time frame to meet explicit objectives.
When certain system states are highly undesirable (e.g.,
population decline of a threatened species), ARM guides
the system away from these by anticipating possible envi-
ronmental processes or decisions that could lead to them
(Martin et al. 2009).
Adaptive Resource Management anticipates future system

changes through a model-based framework. Hypotheses of
system dynamics are explicitly defined and used to antici-
pate future outcomes under potential management actions
and environmental processes. Supporters of ARM often
note that making decisions need not be impeded by a lack of
consensus about our understanding of system processes
(Nichols and Williams 2006, Martin et al. 2009, Marescot
et al. 2013), because ARM enables learning about the sys-
tem while managing. ARM naturally incorporates the phi-
losophy of multiple working hypotheses (Chamberlin 1890)
and updating the relative belief in hypotheses based on new
monitoring information. But to do so meaningfully requires
a well-designed monitoring program that estimates appro-
priate parameters, relevant to management objectives
(Nichols and Williams 2006, Kendall and Moore 2012). A
logical and unanswered question is whether the likelihood of
meeting management objectives is better or worse when
making decisions based on a potentially “poor” set of

models and/or monitoring data in an ARM framework,
compared to decisions from a non model-based, reactive
approach to management. By “poor”, we mean models that
are either relatively simple compared to the likely ecological
process, due to limited available empirical knowledge, or
monitoring data are highly influenced by sampling variabil-
ity, such that the true state of the system may be observed
with error. Both issues are common throughout natural
resource management and conservation biology.
Our objective is to evaluate an anticipatory approach to

optimal decision making under ARM relative to that of a
more common reactive decision strategy in meeting manage-
ment objectives for wild animal populations. We do so using
the example of the Rocky Mountain Population (RMP) of
Sandhill Cranes (Antigone canadensis); the RMP exemplifies
a population that is managed reactively, with annual deci-
sions about allowable harvest. Knowledge of RMP popula-
tion dynamics is sufficient to specify basic population
models, but there is a known knowledge gap of vital rate
variability and population structure. Moreover, annual pop-
ulation monitoring data is characterized by considerable
sampling variability (Gerber and Kendall 2017), such that
the true state of the system may be obscured, and there is no
current information to correct these observations.
We compare these two decision strategies using a simula-

tion approach, where the true population dynamics are gov-
erned by a stochastic age-structured population model with
vital rate density-dependence coupled to environmental
variability. Common to population management programs,
there is an explicit objective for the RMP to maintain a pop-
ulation of Sandhill Cranes within a specific range; the RMP
objective is to maintain the population within 17,000 and
21,000. Sport harvest is the primary mechanism for main-
taining this objective. We compare the potential for an
ARM vs. reactive framework to meet this management
objective under a variety of scenarios that vary by structural
and monitoring uncertainty. Structural uncertainty repre-
sents the uncertainty with regard to the true processes gov-
erning Sandhill Crane dynamics (represented by different
population models), while monitoring uncertainty is due to
error in observations of the true population size, or the age
structure is unknown and has to be assumed. Here, we focus
on a situation where there is no information to correct for
uncertainty of our observed population size. By comparing
scenarios with different types of uncertainty (i.e., structural,
monitoring), we can understand the relative value of elimi-
nating one or multiple uncertainties in meeting the popula-
tion objective. We use as our measure of success the
probability of meeting the population objective across differ-
ent scenarios.
We use harvest of a long-lived, age-structured bird as an

example, while our findings will more generally help conser-
vation and management organizations adopt appropriate
frameworks for decision making, depending on the state of
knowledge of the system and robustness of current monitor-
ing. Results will also clarify the connections among hypothe-
ses, predictive models, monitoring, and the potential for and
utility of learning about population dynamics within ARM.
Organizations using ARM, are considering adopting ARM,
or currently managing populations via a reactive decision
process will find our results especially pertinent.
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METHODS AND MATERIALS

Sandhill Crane life history and management

Sandhill Cranes are large, vocal, birds that are admired as
an icon throughout North America (Gerber et al. 2014).
They are protected and managed in the United States under
the Migratory Bird Treaty Act of 1918, which aims to bal-
ance the use and conservation of migratory bird species. As
with many migratory bird species in North America, popu-
lations are defined according to breeding area affiliation
and managed according to plans outlined by state agencies
and the U.S. Fish and Wildlife Service (Pacific Flyway
Council and Central Flyway Council 2016). Management
objectives vary by population and are based on ecological
and societal values, which for most large crane populations,
includes sport harvest. Sport harvest provides recreational
opportunities and is intended to mitigate agricultural crop
damage from cranes, which can be considerable (Gerber
et al. 2014). Harvest decisions are made annually and per-
tain to the entire population throughout their range (Pacific
Flyway Council and Central Flyway Council 2016).
Life history characteristics of Sandhill Cranes include an

average clutch size of 1.9 (see Gerber et al. 2014), high
annual adult survival (>0.92, Drewien et al. 1995, 2001),
and first attempted breeding by 2–3 yr of age with most pro-
ductive birds >7–8 yr of age (Tacha et al. 1989, Drewien
et al. 2001). Sandhill Cranes have the lowest known juvenile
recruitment of any sport-harvested bird in North America
(Drewien et al. 1995), which for the RMP is driven by cli-
mate, such as drought reducing the quality or quantity of
breeding wetlands (Gerber et al. 2015).

RMP monitoring and harvest decision making

The RMP is monitored annually via a fall pre-migratory
staging area population survey that started in 1997 and
results in an aggregated count (C); the survey is coordinated
across federal and state agencies and includes aerial and
ground counts throughout the breeding area states (Color-
ado, Utah, Wyoming, Montana, Idaho; Pacific Flyway
Council and Central Flyway Council 2016; Kruse and
Dubovsky 2015). There is no additional information col-
lected to adjust C for potential biases: flocks could be
missed or double-counted due to survey duration and
migration timing, and surveyed flocks could be under-
counted due to visibility or counting bias. Moreover, the sur-
vey is an attempt at a total count, providing no basis for
estimating its variance. Since 1972, an annual recruitment
survey has been conducted to estimate the proportion of
juveniles (<1 yr old) in the population (Pt) during the fall
migration, where >90% of the population stops over in the
San Luis valley (SLV) of south-central Colorado. The cur-
rent harvest allocation for the entire RMP is based on the
following prescriptive function (Pacific Flyway Council and
Central Flyway Council 2016)

Ht ¼ gðC3t;P3t;R;LÞ

¼
0; C3t\15; 000

C3t � P3t �R� L� ð Ct
16;000Þ3; C3t� 15; 000

(
(1)

where Ht is the number of hunting permits allocated in year
t, C3t is an index to the population based on smoothing
the annual fall pre-migratory population counts ðCt� 3þ
Ct� 2þ Ct� 1Þ=3, P3t is an index to juvenile production
as measured by smoothing the proportion of juveniles in
the population ðP3t ¼ Pt�3 þ Pt�2 þ Pt�1=3Þ, R is an esti-
mated recruitment of fledged chicks to breeding adults
(R = 0.5), and L is an estimated retrieval rate of cranes
shot by hunters (L = 0.8, thus 20% crippling loss). Popula-
tion counts and the proportion of juveniles are smoothed
to reduce variation caused by poor counts or estimates in
any given year. This function is structured to harvest a total
number of individuals that is some proportion of the num-
ber of juvenile birds in the population, scaling this propor-
tion based on whether the population index is below,
within, or above a population threshold. The aim is to
maintain the population within the management objective
of between 17,000 and 21,000 cranes.
An increase in either P3t or C3t increases allowable num-

ber of hunting permits non-linearly (Appendix S1: Figs. S1
and S2). Between 1997 and 2014, the allowable harvest for
the RMP, as determined by function g (Eq. 1), averaged
1,132 (range: 632–1,970). This translated into an estimated
mean annual realized harvest of 852 (range: 446–1,392;
Kruse and Dubovsky 2015). Because of generally consistent
conditions within the RMP, the allowable harvest has not
varied as much as it could, thus leaving questions as to how
Eq. 1 will operate under a sizable range of possible future
conditions (Appendix S1: Figs. S1 and S2).

ADAPTIVE MANAGEMENT FRAMEWORK

An alternative approach to the RMP’s reactive decision
framework is an anticipatory ARM framework that uses
explicit population models and decision theory to identify
the optimal harvest policy to meet long-term management
objectives. To evaluate the probability of meeting the man-
agement objective under these decision frameworks, we
can suppose a Sandhill Crane population operates accord-
ing to known demographic processes, specified using a
stochastic population model (i.e., defined as the Generat-
ing Model throughout), which is being managed under a
reactive or ARM decision process. For the ARM frame-
work, managers can specify competing population models
that are used for optimal policy identification and learn-
ing. To evaluate each decision process, including alterna-
tive sets of population models within ARM, we can
compare the probability of meeting our long-term man-
agement objectives under each framework; in addition, for
each type of decision framework, we can compare scenar-
ios with different combinations of structural and monitor-
ing uncertainty, along with a defined decision framework
to understand the value of eliminating uncertainties, sin-
gularly or in combination.

ARM decision process

To outline an adaptive management framework for Sand-
hill Cranes, we consider multiple competing population mod-
els that can predict crane populations in year t + 1 based on
the population in the current year t and a harvest decision
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(Ht). Competing models represent alternative hypotheses
about population dynamics (i.e., due to structural uncer-
tainty). By summarizing these models as a discrete Markov
process (i.e., population transitions depend only on the cur-
rent population state and harvest decision), we can evaluate
an optimal state-dependent harvest management policy using
stochastic dynamic programming (Marescot et al. 2013). In
other words, we can calculate the optimal set of harvest deci-
sions for all potential total population sizes that will meet our
long-term objectives, choosing a specific harvest quota based
on the current population size (i.e., current state of the sys-
tem). Note, that the decision process is in regards to popula-
tion state transitions (i.e., total population size), while the
population dynamics and some population models (see sec-
tion, Population Models and Simulation Setup) are age-speci-
fic, referring to specific age classes that have different relative
influence on the dynamics.
We outline the six essential elements of our Markov-deci-

sion problem (Marescot et al. 2013) by first specifying our
objective to follow the RMP management plan (Pacific
Flyway Council and Central Flyway Council 2016): to
maintain a population between 17,000 and 21,000 in perpe-
tuity. Second, we define a vector of possible states of the
population, from 10,000 to 40,000 cranes at an interval of
500. Third, we define a vector of possible actions as harvest
from 0 to 4,000 at an interval of 100. Fourth, we create an
array to define the probability of transitioning from the
current state (Nt) to a population state in year t + 1 (Nt+1),
based on a harvest decision (Ht; P(Nt+1|Nt, Ht)). We calcu-
late these transition probabilities by simulating from
hypothesized population models (see Population Models
and Simulation Setup section); the simulated distribution is
discretized using the defined possible states. Therefore, for
each model, we predict the future possible population
states under all possible harvest decisions. For each year t,
we incorporate model uncertainty by assigning model
weights, representing the relative belief in the ability of each
model to predict crane population dynamics. Model
weights are updated with each harvest decision and annual
observation of the population by evaluating the discrep-
ancy between the prediction of each model and the
observed population (see Learning section). We then use a
weighted average of the predicted transition probabilities
across all models and under alternative harvest decisions,
where the weighting is based on each model weight. Fifth,
we define the utility function, representing our manage-
ment/population objective, for each year t (also called a
reward function; Eq. 2) that represents the desirability of a
resulting state over time

UðNtÞt ¼
1; 17; 000�Nt � 21; 000
0; otherwise

�
: (2)

The utility function states that, for any year the popula-
tion meets our objective (17, 000 ≤ Nt ≤ 21, 000), we
assign a one, and if it doesn’t, we assign a zero. This allows
us to use an optimization process to find the decision that
will maximize the number of one’s we obtain. Note that
we only give utility to the ensuing state of the population
and not to the harvest resulting from the action. The sixth
element is calculating the optimal policy, which indicates

the optimal harvest decision for each possible population
state. A decision is optimal when it is expected to best sat-
isfy the objectives over time. Solving stochastic Markov-
decision problems can be done using a number of algo-
rithms (Marescot et al. 2013). We use our utility function
with our weighted averaged transition probability array,
and the vector of possible harvest actions, to derive the
optimal policy via dynamic programming using the policy
iteration algorithm implemented in the R package
“MDPtoolbox” (Chad�es et al. 2014). Because we are inter-
ested in sustaining the population in perpetuity, we solve
for the optimal policy for an infinite time horizon with vir-
tually no depreciation in the future value of meeting our
population objective (i.e., the discount factor was nearly
one at 0.9999; the small difference from one was to ensure
optimization convergence). Based on the goals of the
RMP management plan, there is no justification for dis-
counting future populations.

Learning

Learning about the relative predictive merit of crane popula-
tion models occurs by updating model weights sequentially by
year. This is done by evaluating the discrepancy between the
prediction of each model using the current population state
(Nt) and implemented harvest decision (Ht), with that of an
observation of the population in the following year (Nt+1;
Eq. 3). The weight of model i is updated using Bayes Theorem

PðModeli;tþ1jNtþ1Þ ¼ PðNtþ1jModeliÞ � PðModeli;tÞPn
j¼1 PðModelj;tÞ � PðNtþ1jModelj;tÞ :

(3)

The P(Modeli,t) is the model weight of Modeli,t in the
previous year and P(Nt+1|Modeli) is the probability density
of the observed population size, given the predicted distri-
bution of Nt+1 under Model i. We estimate this probability
by assuming that predictions under a given model follow a
Normal distribution and use the probability density func-
tion to calculate the probability of the observed population
size (Nt+1), given the mean and variance of the predicted
distribution of Model i. We use this approach because it
provides a comparable measure across different types of
models, which may or may not be fit using likelihood the-
ory. We investigated alternative approaches and found
using the Normal distribution straightforward and appro-
priate because predictive distributions were symmetric and
unimodal. This would have not been appropriate if our
populations approached zero, but this was not the case.
More so, we found using the relative frequency from the
predictive distribution led to issues of dropping models
from the model set because an observed population size
outside the predictive distribution would have a weight of
zero. Rather, the Normal distribution allowed a continuous
probability density over the entire real number line
(x 2 R).
Our approach to learning is passive (Kendall 2001, Wil-

liams 2011b), such that the optimization focus is exclusively
on meeting our management objective rather than the value
of learning; however, learning still occurs, but as a by-
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product of the iterative decision process. This is in contrast
to an active process to learning, where we anticipate the
effect of the decision on resolving model uncertainty (Wil-
liams 2011b). The learning process is relative (comparative)
among models, and therefore conditional on the quality of
the model set. If models represent clear hypotheses about
the system, updating weights provide a process to shift sup-
port for each hypotheses based on new monitoring data.
However, it is rarely justifiable to assume the model set con-
tains a model that represents the true population dynamics.
Thus, an alternative focus on learning would be to identify a
model or average model set that provides robust predictions
to make decisions that lead to meeting objectives. In con-
trast, there is no formal learning within the reactive decision
process because there is no set of models to compare; learn-
ing is more general, such as how the population may change
as a response to harvest.

POPULATION MODELS AND SIMULATION SETUP

Simulation workflow

To evaluate the reactive and ARM decision frameworks,
we outline a simulation process that considers a wide range
of potential crane population dynamics. The simulation
has three fundamental elements, (1) a Generating Model
that produces age-structured population dynamics coupled
with environmentally driven vital rate density-dependence
based on a stochastic carrying capacity, (2) a monitoring
process that determines whether the population in each
year can be observed perfectly or with error and whether
the age-structure is observed or only the total population
size, and (3) a decision process that either uses ARM or the

reactive RMP process (Eq. 1; Box 1). For both decision
frameworks, harvest decisions are made annually for the
total population size, which affects the population trajec-
tory from the Generating Model. Therefore, despite age-
structured population dynamics, decisions are made with-
out explicit consideration of the age structure. To incorpo-
rate structural uncertainty in ARM, we consider model
sets that include all or a subset of six alternative models,
which may also include the Generating Model. When only
the total population size is observed, an assumption about
the age structure is required to make predictions with age-
specific population models. Ignorance of population age
structure is common for many species, as it is often logisti-
cally infeasible or cost prohibitive to estimate it directly
(Gerber and Kendall 2016). More so, population models
either make an assumption about the carrying capacity or
do not incorporate it at all. This provides a realistic situa-
tion in which environmental variation causes density-
dependent effects, but we cannot accommodate such
dynamics because data on carrying capacity is unavailable
or unknowable.

The generating model

Representative of a long-lived, age-structured popula-
tion, we define the “true” Sandhill Crane population
dynamics to follow a stochastic, density-dependent popu-
lation model with age structure. Ages are defined from zero
to eight, where the eighth age includes all individuals that
are eight or older. Currently available crane data do not
support a fully empirical parameterization of such a
model. We thus use empirical estimates of Sandhill Crane
vital rates (i.e., survival, fecundity, breeding proportion)

Box 1. Simulation workflow: For each of nine scenarios, we simulate Sandhill Crane population dynamics and make annual
harvest decisions to evaluate the robustness of meeting our population objective. Scenarios vary in the decision framework,

whether the population is observed with error, and for the adaptive management framework, the model set.
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coupled with simple functional equations (i.e., non-
mechanistic) to define density-dependent processes to cap-
ture the general dynamics of a highly age-structured popu-
lation in a changing environment. Our aim is not to mimic
Sandhill population dynamics per se, or limit population
dynamics to only what has been observed, but to capture a
wide range of potential conditions that is feasible for a
long-lived vertebrate, including population stability,
increase, and decrease, as well as changing age structure.
This approach allows us to fully consider the benefits of
each type of decision process.
All vital rates at or near carrying capacity are defined

based on empirical findings from the RMP. Survival
parameters are age specific (Sk for age k) and based on esti-
mates from a 23-yr mark resight study (W.L. Kendall, and
R.C. Drewien, unpublished data). Fecundity is the average
number of young per pair observed over 40 yr (Drewien
2011). Only older individuals ≥5 yr old can breed, while
most production comes from individuals ≥8 yr old (Gerber

et al. 2014); these individuals have the highest probability
of breeding, which declines with younger ages (R.C. Dre-
wien, unpublished data). Realized harvest (f(Hk,t, Nk,t) for
age k and year t) is compensated up to natural mortality
(i.e., non-harvest mortality determined by the survival
parameters; see Appendix S2), as suggested by empirical
results (W.L. Kendall, and R.C. Drewien, unpublished data;
Gerber and Kendall 2017); the realized harvest is equal to
the annual allocated harvest from the decision process (see
Discussion section and Appendix S2 for comments on par-
tial controllability).
Vital rates (survival, fecundity, breeding proportion) are

assumed to be affected by changing environmental condi-
tions, characterized as the annual carrying capacity (Kt;
Fig. 1a; Appendix S2). The carrying capacity represents all
the ecological conditions that are needed to support the
population and is annually stochastic, to incorporate realis-
tic annual changes in environmental conditions. We consider
the carrying capacity to be initially stable and set at the

FIG. 1. As part of the Generating Model, we define (a) stochastic carrying capacity over time (one realization), (b) proportion of breed-
ers under different population sizes in relation to carrying capacity, (c) fecundity per capita under different population sizes in relation to
carrying capacity, and (d) mean survival by age under different population sizes in relation to carrying capacity. The vertical line at 1 indi-
cates when the population is at carrying capacity.
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approximate population size of the RMP for the last two
decades (20,000; Gerber 2015); it then stochastically
increases for several decades and then declines for several
decades back to the initial capacity (Fig. 1a; Appendix S2).
We do so to consider the performance of each decision
framework across a stable, increasing, and declining popula-
tion. Harvest decisions (t = 21–100) occur over all three
environmental epochs to understand potential sensitivities
of ARM or the reactive decision process. Functional equa-
tions are used to define vital rate density dependence based
on theoretical and empirical population processes (Eber-
hardt 2002), such that vital rates are negatively affected by
increasing population size in the following order, (1) juvenile
survival, (2) proportion of breeders, (3) reproductive rate,
and (4) adult survival. Non-vital rate parameters included in
the density-dependent functions listed below are not based
on empirical estimates, but are used to merely force this
order of how density dependence effects the population
dynamics.
Parameters are noted in italic, while density-dependent

functions and statistical distributions are not. Density-
dependent functions for the proportion of breeding individu-
als and per capita fecundity are described as (PrBreed = 0.25
and Fecundity = 1.24; Fig. 1b, c)

PropBreedingðPrBreed;Nt;KtÞ

¼ PrBreed; Nt=Kt\4=5

PrBreedþ 0:16� 0:2�Nt=Kt; otherwise

�

and

FecundityðFecundity;Nt;KtÞ

¼ Fecundity; Nt=Kt\1

Fecundityþ 0:7� 0:7�Nt=Kt; otherwise.

�

All survival parameters are stochastic (see Appendix S2).
We assumed baseline juvenile survival (1st year, S1,t) follows
a Beta distribution with a mean of 0.73 and variance of 0.07
(Fig. 1d), which is affected by the population size as

JuvSDDðS1;t;Nt;KtÞ¼ S1;t; Nt=Kt\3=4
S1;t�ð0:7�Nt=KtÞ3; otherwise.

�

Adult survival (S2-8,t) is defined similarly, where the mean
of Sk,t for k = 2 to 8 is 0.80, 0.90, 0.93, 0.94, 0.95, 0.96, 0.97,
respectively, while the variances are 0.06, 0.05, 0.04, 0.03,
0.02, 0.01, 0.01, respectively. An alternative density-
dependence function is used, where adult survival is less neg-
atively affected than juvenile survival (Fig. 1d; Eberhardt
2002)

AdultSDDðS2�8;Nt;KtÞ

¼ Sk;t; Nt=Kt\1:5

Sk;t þ 0:3� ð0:1�Nt=KtÞ1=2; otherwise.

(

The generating population model is defined following the
population size of each age k in year t (Nk,t), the number of
breeders (zk,t), and survival probability (Sk)

z8;tþ1 �Binom N8;tþ1;PropBreedingðPrBreed;Nt;KtÞ
� �

z7;tþ1 �Binom N7;tþ1;PropBreedingðPrBreed=2;Nt;KtÞ
� �

z6;tþ1 �Binom N6;tþ1;PropBreedingðPrBreed=3;Nt;KtÞ
� �

z5;tþ1 �Binom N5;tþ1;PropBreedingðPrBreed=5;Nt;KtÞ
� �

N1;tþ1 �Poisson
X8
i¼5

FecundityðFecundity;Nt;KtÞ
2

� zi;tþ1

 !

N2;tþ1 �Binom N1;t;S1;t
� �� f ðH1;t;N1;tÞ

N3;tþ1 �Binom N2;t;S2;t
� �� f ðH2;t;N2;tÞ

N4;tþ1 �Binom N3;t;S3;t
� �� f ðH3;t;N3;tÞ

N5;tþ1 �Binom N4;t;S4;t
� �� f ðH4;t;N4;tÞ

N6;tþ1 �Binom N5;t;S5;t
� �� f ðH5;t;N5;tÞ

N7;tþ1 �Binom N6;t;S6;t
� �� f ðH6;t;N6;tÞ

N8;tþ1 �Binom N7;t;S7;t
� �þ Binom N8;t;S8;t

� �� f ðH7;t;N7;tÞ
� f ðH8;t;N8;tÞ

Ntþ1 ¼
X
8k

Nk;tþ1

Monitoring uncertainty

Regardless of the decision process (reactive or ARM), it is
common to only observe a count of the population (Countt),
rather than the true abundance (Nt). In Scenarios, we con-
sider simulation scenarios where, in any given year, the pop-
ulation may be over- or under-counted as

logðCounttÞ�NormalðlogðNtÞ; 0:07Þ; (4)

where the observational variation (0.07) was estimated from
the RMP monitoring data (Gerber and Kendall 2017). Thus,
in an ARM framework, models predict the population in
year t + 1, and models are updated using the observed
Countt rather than the true population size (Nt). As such, the
optimal decision process is based on potentially incorrect
information. There is no correction within the decision pro-
cess, such as when using partially observable Markov decision
processes, which recognizes the reality that many monitoring
programs observe data with error and can’t account for it.
This is the case for RMP Sandhill Cranes and numerous
other migratory birds (Gerber and Kendall 2017). For scenar-
ios where the population is observed with error and the reac-
tive decision process is employed, harvest decision making
(Eq. 1) is done using Countt instead of Nt.

ARM alternative population models

Parameterizing a highly structured population model like
the Generating Model will not be feasible for most species
and populations. Empirical studies and monitoring sources
are simply too limited to do so, despite the knowledge that
populations are often highly structured (by age or life stage),
variable, and vital rates depend on density-dependent relation-
ships. However, within ARM, any model that can predict the
future population state, given the current state (Nt, or Ct) and
harvest decision (Ht) could be considered; this includes mech-
anistic or descriptive models (e.g., regression models), simple
or complex models that range in degree of integrated parame-
ters, or purely predictive models that include no representation
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of processes (e.g., time-series models; Nichols 2001). We con-
sider a variety of common population models to be used to
predict future population states within the ARM process.
These models are typically considered in research and man-
agement. We consider a variety of these model types to bal-
ance the strengths and limitations of each to potentially
achieve a model set that can provide useful predictions over a
wide range of conditions. Within the ARM framework, we
considered six different predictive population models. In Sce-
narios, we outline simulation scenarios that use different com-
binations of these six models within an ARM model set,
which may or not also include the Generating Model.
Models incorporating data beyond the monitoring of

total population size (Nt) and proportion of juveniles in the
population (see Model 2), are not updated within each year
of the simulation. As with many wildlife monitoring pro-
grams, such as the RMP Sandhill Cranes, new annual infor-
mation about the population is limited. Information about
vital rate parameters, such as age-specific survival, are
assumed to come from a separate study that is not part of
regular annual monitoring.

Model 1

Model 1 is an autoregressive time-series model; it incorpo-
rates a first-order Markov process, where the population in
year t + 1 (Nt+1) depends on an intercept b0, the autocorre-
lation parameter q, the previous year’s population (Nt,
which may be observed with error, depending on the scenar-
io), the number of birds harvested (Ht), and noise (e), which
has a mean of zero and variance of r2,

Ntþ1 ¼ b0 þ q� ðNt �HtÞ þ εt

εt �Normalð0;r2Þ:

Within the simulation, the model is fit at each time step
with the available data (Ht and N1:t, where t is the current
year within the simulation) to estimate the unknown param-
eters, b0, q, and e and project the population a single time
step. This was done using the R package FitAR (McLeod
and Zhang 2008). We considered harvest to be additive to
natural mortality.

Model 2

Model 2 is a discrete logistic growth model, defined as,

Ntþ1 ¼ Nt þ r�Nt 1�Nt

Kt

� �
�Ht:

This model assumes Kt is fixed at 30,000, recognizing that
estimating carrying capacity is often infeasible. The intrinsic
growth rate (r) is defined based on juvenile recruitment (Pt)
and differential survival of juveniles and adults (Appen-
dix S2). Survival parameters are stochastic and defined via
probability distributions, while Pt is data that is observed
annually. As such, in every time step, r changes based on the
realized survival probabilities and the observed juvenile
recruitment. We considered harvest to be additive to natural
mortality.

Models 3 and 4

Model 3 is a density-independent five-age stochastic pop-
ulation model, where harvest mortality is additive. The fifth
age represents all individuals that are five or older. Model 4
is the same population model but harvest is compensated
for all ages up to natural mortality. Survival is stochastic
with means for ages 1, 2, and 3–5 as 0.85, 0.94, and 0.96,
respectively. Thus, survival rates are similar to the Generat-
ing Model near the carrying capacity, but not equivalent;
fecundity of individuals ≥5 yr old is equivalent to the fecun-
dity of individuals ≥8 yr old of the Generating Model. In
both models, only individuals ≥5 yr old breed and only a
proportion of them annually produce young (Appendix S2).

Model 5

Model 5 is the Generating Model, except harvest is
assumed to be additive to mortality, rather than compen-
sated up to natural mortality.

Model 6

Model 6 is a moving three-year average (MTYA) estima-
tor, Ntþ 1 ¼ ðNt� 2þNt� 1þNtÞ=3�Ht, where t is the
most current year. Stochasticity is incorporated by assuming
each count is observed from a Normal distribution with the
count as the mean and an assumed standard deviation of
0.07, which was estimated from the RMP monitoring data
(Gerber and Kendall 2017). This estimator is often used to
smooth counts in population monitoring of migratory birds
and threatened populations (Gerber and Kendall 2017). We
considered harvest to be additive to natural mortality.

Scenarios

We consider nine simulation scenarios that vary in their
combinations of elements (i.e., structural, monitoring, and
decision framework; Table 1). For each scenario, a popula-
tion trajectory from the Generating Model is simulated
1,000 times with an initial 20-yr period without harvest, fol-
lowed by an 80-yr period with harvest (t = 21–100; Box 1).
Population trajectories are initialized with 20,000 cranes
with an age-structure biased toward older individuals (age
proportions = [0.08 0.06 0.05 0.04 0.04 0.04 0.03 0.66]), rep-
resenting the general conditions of the RMP (Gerber 2015).
We consider a set of scenarios with differing combinations
of types of uncertainty so that we can explore how singular
and multiple uncertainties affect meeting our population
objective and harvest decisions (Table 1).
Scenarios 1–6 provide a balanced set to evaluate how dif-

ferent sources of uncertainty (singularly and multiple) affect
meeting the population objective when monitoring the total
population size with and without error, choosing an ARM
or reactive decision framework, and considering structural
uncertainty with and without the true model (i.e., Generat-
ing Model). Scenarios 1–4 use ARM for making harvest
decisions, but vary by whether the model set includes the
Generating Model and a close variant (Model 5) and
whether the population is observed with or without error;
these scenarios involve only observing total population size
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(similar to the current RMP monitoring) and require
assumptions about the age-structure. Similar to the current
situation with the RMP, we assume the age-structure was
estimated once and represents the best available data. Thus,
age-structured population models use this age-structure and
the observed population size within the simulation to make
predictions. Scenarios 5 and 6 use the reactive decision
framework, such that there is no model set or assumptions
of age-structure, but vary by whether the population is
observed with error or not.
We also include a posthoc scenario 7, which mimics sce-

nario 4, except that the model set does not include Model 1;
preliminary results indicated the dominance of this model,
and thus we were interested in understanding whether
removing it from the model set would lead to drastically dif-
ferent model averaged population predictions and thus a dif-
ferent probability of meeting the objective. Lastly, we
consider two baseline scenarios, where the population size
and structure are monitored without error and the model set
includes the Generating Model (scenario 8) and when the
only model considered is the Generating Model (scenario 9).
Scenario 8 allows us to understand the benefits of eliminat-
ing all uncertainties (not including the variability caused by
stochasticity), except which model is best (i.e., structural
uncertainty), and to characterize the rate of learning that is
possible when an ideal monitoring process is in place and
the true model is hypothesized. Scenario 9 captures the best
case, where there is no uncertainty in the monitoring pro-
cess, the decision framework, or which model is most appro-
priate; this provides a baseline of what is possible when
optimal decisions are made at the total population level for
an age-structured population, rather than age-specific opti-
mal decisions (Hauser et al. 2006). Hauser et al. (2006)
make a compelling argument that managing a population
with significant stage/age structure is complicated by tran-
sient non-linear dynamics (Gerber and Kendall 2016), such
that meeting population objectives might require making
age-specific optimal decisions, rather than optimal decisions
at the total population, which can’t control for transient
dynamics. While Scenario 9 takes into account the true age

structure, optimal decisions are made at the total population
level and not individual ages, thus transient dynamics and
especially population momentum could lead to trajectories
above or below the population objective. We see this as an
important distinction as it recognizes that age-specific har-
vesting of Sandhill Cranes and many other hunted species is
not realistically achievable.
We compare scenarios by investigating the expected (i.e.,

averaged) probability of meeting the population objective
(average proportion of years where the true population lies
between 17,000 and 21,000) over the 80 yr harvest decisions
are made. Additionally, we characterize the best and worst
possible outcomes of a scenario by calculating the maximum
and minimum annual probability of meeting the population
objective. Although not an explicit objective, we also report
differences in expected annual harvest over the years.

The value of eliminating uncertainties

We use a value of information approach to consider elimi-
nating all or partial uncertainty in regards to making har-
vest decisions (see, Yokota and Thompson 2004, Johnson
et al. 2014). Specifically, we compare results across scenarios
to understand the value of eliminating the different types of
uncertainties associated with making decisions (i.e., moni-
toring, structural, decision framework), in terms of meeting
the management objective. We do so by quantifying the dif-
ference in the expected probability of meeting the manage-
ment objective between scenarios 1–8 vs. scenario 9, where
there are no uncertainties (All Uncertainties). Thus, we are
specifically quantifying the expected change in meeting the
population objective when all uncertainties have been elimi-
nated (DAll). If the change in the expected probability of
meeting the population objective is zero, there is no value in
eliminating the uncertainties, in terms of meeting the popu-
lation objective. To understand the value of eliminating one
or more uncertainties, but not all uncertainties (Partial
Uncertainties), we compare scenarios 1 through 8 with each
other, which include different combinations of types of
uncertainties. Thus, we calculate the difference in expected

TABLE 1. Simulation scenarios and results of evaluating the potential for learning and meeting management objectives within an adaptive
resource management (ARM) or reactive decision framework (RMP)

Scenario
number

Management
strategy Monitoring†

Age‡
structure Model set

Expected probability of
objective§
(Min–Max)

Expected annual
harvest

(Min–Max)

1 ARM imperfect assumed 1–6, truth 0.85 (0.43–1.00) 731 (195–1,418)
2 ARM perfect assumed 1–6, truth 1.00 (1.00–1.00) 793 (321–1,363)
3 ARM perfect assumed 1–4,6 1.00 (0.98–1.00) 651 (290–1,390)
4 ARM imperfect assumed 1–4,6 0.88 (0.45–1.00) 728 (196–1,409)
5 RMP¶ imperfect NA NA 0.72 (0.01–1.00) 974 (615–1,294)
6 RMP¶ perfect NA NA 0.77 (0.03–1.00) 981 (654–1,301)
7 ARM imperfect assumed 2–4, 6 0.74 (0.51–1.00) 635 (220–1,573)
8 ARM perfect known 1–6, truth 1.00 (1.00–1.00) 818 (385–1,345)
9 ARM perfect known truth 1.00 (1.00–1.00) 811 (391–1,363)

Notes: Values in parentheses are the minimum and maximum range.
†Population size is either observed without error (perfect) or symmetric noise around the true population (imperfect).
‡Age-structure is either known perfectly in each year (known) or is assumed to be an old age-structure prior to harvest and constant

through time (assumed).
§The RMP objective is to maintain a population between 17,000 and 21,000.
¶Scenarios 5–6 do not involve model updating.
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probability of meeting the management objectives between
these scenarios (DPartial). Higher values indicate a greater
value of eliminating uncertainties, in regard to meeting the
management objective. Note that we are calculating the
expected difference of meeting the management objective
across all three epochs (stable, increasing, and declining
population) to obtain an overall assessment of the different
scenarios under these three important periods of population
change.
For the purposes of these calculations, we consider the

choice of decision framework as a source of uncertainty. In
addition, we also investigate how reducing uncertainty
affects annual harvest, which is an important outcome, but
not an explicit management objective; it does not influence
the value of information, but is useful to understand popula-
tion trajectories.

RESULTS

ARM decision framework

We found ARM scenarios (scenarios 1–4, 7–9) varied sub-
stantially in their expected annual probability of maintain-
ing the RMP objective, by whether the population was
observed with error (scenarios 1, 4, 7) or was observed with-
out error (scenarios 2–3, 8, 9; Table 1, Figs. 2, 3). The
expected probability of maintaining the population objective
over the duration of harvest when the population was
observed with error ranged from 0.74 to 0.88, while the min-
imum values ranged from 0.43 to 1.00 (Table 1). The
expected annual probability of meeting the objective was
lowest under the posthoc scenario 7, while the lowest

minimum probability of meeting the objective was with sce-
nario 1. Scenarios where the population was observed with
error led to differences in the extent of populations going
below or above the objective, depending on the model set.
In all scenarios where the population was monitored

without error (scenarios 2–3, 8, 9), we found the minimum
annual probability of maintaining the population objective
was 0.98 (Table 1). Of the scenarios that did not include
the Generating Model for predictions, these consistently
met the population objectives (see Learning section). The
overall expected annual harvest varied among scenarios
(range: 635–818; Table 1). When there was no monitoring
or structural uncertainty (scenario 9), such that the only
model considered was the Generating Model (Fig. 2), the
probability of meeting the objective was always 1.00.
Despite not having age-specific optimal harvest decisions
under scenario 9, the annual predictions were highly accu-
rate (Fig. 3); the expected annual harvest was found to vary
from 391 to 1,363, corresponding to the changes in carry-
ing capacity and thus the effects of density dependence on
vital rates.

Learning

We found that when the population was observed with
error, Model 1 (autoregressive time-series model) accumu-
lated weight quickly and completely (scenarios 1 and 4;
Fig. 4). This led to adequate performance overall in meeting
the population objective (Table 1). However, it performed
worst when the carrying capacity increased, such that Model
1 did not respond quickly, allowing the population to move
beyond the upper population objective because harvest was

FIG. 2. The expected true (top) or observed (bottom) annual probability of meeting the Rocky Mountain Population Sandhill Crane
objective for different scenarios using an adaptive management framework for making harvest decisions. The legend indicates the scenario
number, decision process, monitoring type, knowledge of age structure (SS), and whether the model set included the true model.
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FIG. 3. Population dynamics and expected population predictions from the weighted average of the model set for six adaptive resource
management scenarios that vary in model set, whether the population is observed with error and whether the age-structure is observed annu-
ally. The population, observed population, and predicted population are presented at their means and 95% quantiles. The gray area indicates
the RMP population objective. SS is age-structure. Scenario 9 indicates optimal decision making using the Generating Model, such that
there is no structural uncertainty.
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not adequately increased during this time period (Fig. 3).
By removing Model 1 in our posthoc scenario 7, we found
that Model 2 (logistic growth model) slowly accumulated
most of the weight and performed similarly to Model 1.
Model 1 appeared to dominate Model 2 because of its larger
prediction variance.
When the population was observed without error, the

model set and whether age structure was assumed or known

had an important impact on which models accrued weight.
But, the differences did not affect the probability of meeting
the objective, which was almost always 1.00. When we
assumed the age structure and neither the Generating Model
nor its variant (Model 5) were in the set (scenario 3), Model
3 (five-age population model) mostly dominated (Fig. 4).
When the population size was observed without error and
the model set included the Generating Model and Model 5,

FIG. 4. Model weights through time for six adaptive resource management scenarios that vary in the model set with whether the popula-
tion is observed with error and whether the age-structure is observed annually or assumed. M1–6 indicates Models 1–6, True M indicates
the Generating Model, and SS indicates age-structure.
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the Generating Model quickly accumulated almost all model
weight. However, while this was maintained throughout
when the population structure was known annually (sce-
nario 8), its weight quickly declined as the carrying capacity
did when the population structure was assumed (scenario 2).

Reactive decision framework

We found that making harvest decisions based on the reac-
tive framework (scenarios 5 and 6) led to the lowest expected
probability of meeting the management objective, which was
still relatively high at 0.72 and 0.77, respectively; these scenar-
ios led to the highest overall expected annual harvest. Scenar-
ios 5 and 6 also led to the lowest minimum annual probability
of meeting the population objective (<0.01). The expected
probability of meeting the population objective was slightly
better when the population was observed perfectly (Table 1).
When the carrying capacity was either stable or decreasing,
the reactive decision framework set harvest levels that caused
the population to settle near the lower boundary of the popu-
lation objective (Fig. 5). We found that when the population
was observed with error (scenario 6), this led to observed
counts that were below the allowable harvest level (15,000)
and thus harvest was closed in rare circumstances (Fig. 5). In
years when the carrying capacity was increasing, the reactive
decision framework appropriately allocated harvest to main-
tain the population within the bounds of the objective,
regardless of whether the population was observed with error.

The value of eliminating uncertainties

The largest DAll (0.28) occurred when resolving all uncer-
tainties associated with managing under the RMP decision
framework while observing the population with error (differ-
ence between scenario 5 and 9; Table 2). This includes adopt-
ing an optimal decision process where the population size and
structure is observed perfectly and there is no structural

uncertainty. This would guarantee meeting the objective,
although with an expected loss of annual harvest of 163
cranes. Within the ARM scenarios, we found the largest
improvement (i.e., DAll of 0.26) when resolving all uncertainties
in the posthoc scenario 7, which did not include Model 1, the
Generating Model, or it’s variant, Model 5. There is almost
no improvement in meeting the population objective when the
only uncertainties that require resolution are age structure and
structural uncertainty (i.e., choosing the best model). The
expected benefit of resolving monitoring uncertainties was
higher in an ARM framework (DPartial = 0.14–0.15) than if an
ARM framework is not adopted (DPartial = 0.05; Table 2).
Changing from the reactive to an ARM decision process

always increased the probability of meeting the population
objective, regardless of resolving any additional uncertainties
(Table 2; rows where resolved uncertainty contain DF). How-
ever, there was little value gained when changing to an ARM
process if the population was observed with error and the
model set didn’t include Model 1 (DPartial = 0.02). In all cases
of changing from the RMP decision process to an ARM pro-
cess, there is a decrease in annual expected harvest (Table 2).

DISCUSSION

Our findings strongly support the utility of the ARM
framework to achieve population objectives, even when
model sets only include models that are known to be deficient
representations of true population processes. We found the
single most important uncertainty to resolve was the appro-
priate decision process (Moore and Conroy 2006). The sec-
ond most important was monitoring uncertainty, such that
the true population state was known. If population monitor-
ing data are highly variable due to sampling variation that
can not be controlled and/or empirical knowledge is limited
for constructing realistic population models, ARM model
sets should include a range of model types, including simple
mechanistic, descriptive, and purely predictive models.

FIG. 5. Annual probability of meeting the objective for the Rocky Mountain Population of Sandhill Cranes (first row), mean total har-
vest and 95% quantiles (second row), and population dynamics when the population is observed with and without error (mean and 95%
quantiles; third row, Harvest decisions are made using the RMP decision framework (Scenario 5 and 6). The gray area of the third row
figures indicates the RMP population objective.
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An important, but surprising finding was that optimal age-
specific harvest decisions were unnecessary to meet the popu-
lation objective (Hauser et al. 2006, see Johnson et al. 2018
for similar findings). Rather, optimal harvest decisions with-
out regard to age structure permitted meeting the objective.
In fact, even when using simple population models, when the
current age-structure was assumed, our optimal population-
level harvest decisions led to meeting the objective when the
population was observed without error. The reason for this
was likely that the stochastic age structure did not vary sub-
stantially and that transient dynamics were not extreme (see
Gerber and Kendall 2016); as the discrepancy between the
assumed and realized population age-structure increases, the
probability of meeting a population objective will decrease
(B. Gerber, unpublished data). This is an especially important
finding, given that many migratory birds, including Sandhill
Cranes, cannot be aged beyond a short immature period, so
age-specific harvest allocations are not practical.

Learning within adaptive management

Learning is an important component of ARM, insofar as
it improves predictions for future management decisions
(Williams 2011a). In most ARM programs, the model set is
composed of a small set of hypothesized process-driven
models (Johnson et al. 1997). Therefore, learning within the

ARM process is specifically focused on better understanding
the fundamental components of the ecological process,
which should ideally provide more robust predictions of the
system, even when observations range outside of past condi-
tions. We highlight an alternative approach in selecting a
model set; we included population models that were moti-
vated by underlying dynamics of Sandhill Cranes (e.g.,
Models 2–4), as well as purely functional models, such as
the autoregressive time-series model (Model 1) and the mov-
ing three year estimator (Model 6).
Our model sets recognize that in some or all years, empiri-

cally parameterized crane population models may poorly
represent the true dynamics, either because of monitoring
uncertainties or because the dynamics that are governing
population change are poorly captured (e.g., Model 3 is den-
sity independent, while the Generating Model is density-
dependent). As such, our “learning” is aimed at identifying
the most useful predictive model(s) in the set for a given set
of circumstances. Our goal for learning is to provide the best
predictions to make harvest decisions that will meet our
management objectives, not necessarily to perfectly charac-
terize the system. Ideally, we would most benefit if we could
identify a model that captures the fundamental aspects of
the true system processes, but we acknowledge that this is
not always feasible. A potential risk of this approach is that
all models may do poorly when faced with highly different

TABLE 2. Comparing scenarios to evaluate the improvement in meeting the population objective when all (All uncertainties, DAll) or
partial (Partial uncertainties; DPartial) uncertainties are resolved and the consequences to changes in expected harvest management
decisions for the Rocky Mountain Population (RMP) of Sandhill Cranes

Resolved uncertainty†
Unresolved
uncertainty† Model set‡

Change in P
(meeting objective)

Change in expected
harvest§

All uncertainties (DAll)
SS, Models, DF – – 0.23 �170.45
Pop, SS, Models, DF – – 0.28 �163.34
Pop, SS, Models – M2–4, M6 0.26 175.36
Pop, SS, Models – M1–4, M6 0.14 82.77
Pop, SS, Models – M1–6, Truth 0.15 79.46
SS, Models – M1–4, M6 0.00 160.17
SS, Models – M2–4, M6 0.00 18.17
Models – M1–6, Truth 0.00 �7.08

Partial uncertainties (DPartial)
Pop DF – 0.05§ 7.01
Pop SS, Models M1–6, Truth 0.15 61.29
Pop SS, Models M1–4,6 0.14 �77.39
SS Models M1–6, Truth 0.00 25.24
DF Pop, SS, Models M1–4, M6 0.14 �246.21
DF Pop, SS, Models M1–6, Truth 0.13 �242.90
DF Pop, SS, Models M2–4, M6 0.02 �338.79
DF SS, Models M1–4, M6 0.23 �330.62
DF SS, Models M1–6, Truth 0.23 �188.62
DF Models M1–6, Truth 0.23 �163.37
Pop, DF SS, Models. M1–4, M6 0.28 �323.60
Pop, DF SS, Models. M1–6, Truth 0.28 �181.60
Pop, SS, DF Models M1–6, Truth 0.28 �156.36

A dash indicates there are no uncertainties remaining or no model set was used (implying a comparison with the RMP decision process).
†Uncertainty includes monitoring population abundance (Pop), age-structure (SS), models (Models), and the decision framework (DF).

A resolved DF indicates that an ARM framework is used, while unresolved indicates the RMP framework. If DF is not included in a row
then the probability of meeting population objective is being considered between ARM scenarios.
‡The model set indicates the scenario with unresolved uncertainty (see Table 1).
§Harvest is not a specific objective and does not effect the value of information. It is a by-product of the system and decisions made to

meet the objective.
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observations than what is typical. Here, process-driven mod-
els are especially useful.
Perhaps though, the expectations of identifying ecological

hypotheses with correct dynamics should be tempered,
based on the ease with which model weight can accrue with
incorrect models, even in the presence of the correct model
(this study; Conn and Kendall 2004); this can happen when
models have different variance structures (e.g., some models’
predictions are highly precise compared to others) or when
the observational process isn’t corrected for and masks the
true population trajectory. It is satisfying that the ARM
learning process correctly identified the Generating Model
with 100% weight, but only when the population size and
age-structure was annually observed without error. Thus, if
monitoring data were accurate and we hypothesized the true
population process, we could quickly identify it as the best
ecological model through model weight updating (≥0.9
model weight in <10 yr). However, more commonly than
not, this is unlikely to be the case and it should be recog-
nized that a set of poorly realistic models and imprecise
monitoring can cause misleading ecological learning about
the system. For example, in our scenario 1, the model set
included the Generating Model, but no weight was given to
it because we observed the population with error and did
not know the true age structure. Furthermore, even when we
did observe the population perfectly, the Generating Model
was well supported for only part of the simulation, likely
due to the assumption of age structure. However, a set of
poorly realistic models and imprecise monitoring may not
jeopardize ARM’s ability to improve management decisions
and perform better than a reactive approach, as long as the
model set in total provides robust predictions.
The quality and rate of learning in ARM will likely

depend on whether model parameters are updated along
with the model weights on an annual basis, at longer time
periods, or not at all. Our models varied in whether parame-
ters were annually updated based on new data (Models 1–2)
or not (Models 3–6). Being able to update model parameters
is likely a more efficient way to learning, improving predic-
tions, and thus improving management decisions. However,
whether parameters can be updated depends on whether
monitoring or additional research is being done jointly to
estimate demographic parameters, such as survival. This will
likely be unique to different programs. For RMP Sandhill
Cranes, survival is not monitored annually and thus updat-
ing it is not feasible. Additional research should identify the
value of information of model parameter updating at multi-
ple time scales.
Lastly, learning within ARM depends on how we measure

the discrepancy between model predictions and observed
state variables. Updating model weights using Bayes theorem
is a logical and powerful approach. However, there are
important consequences that should be noted. If a model
poorly predicts in a given year, the P(Nt+1|Modeli,t) can be
approximated (e.g., rounding or discretization of an empirical
distribution) at zero, such that the updated weight for model i
will be zero, ensuring its effective removal from the model set.
This is simply an outcome of using Bayes theorem. If all
models poorly predict the new observation with a probability
of zero, no model updating can be performed. Similarly, we
found it common that models with the largest prediction

variances accumulated most of the weight. The P(Nt+1|Mod-
eli) accounts for both the bias and precision of a model’s pre-
diction, which may lead to giving models that are highly
imprecise and somewhat biased more weight, compared to
other models that are based on more reasonable hypotheses,
but are overly precise (Appendix S1: Fig. S3).

Sandhill Crane management

For Sandhill Crane management, there is a higher risk of
not meeting the RMP population objective by managing
under the current reactive framework, compared to an
ARM framework. By explicitly recognizing the uncertainty
about how the population will change from one year to the
next, there is an inherent conservatism in harvest decisions
compared to a reactive decision process. The primary defi-
ciency in the RMP harvest framework occurs when the car-
rying capacity is stable or declining. In either case, harvest is
allocated to a degree that causes the population to be
pushed to and sometimes below the lower bound of the pop-
ulation objective (17,000), regardless of whether the popula-
tion is monitored without error. This occurs even with
compensation up to natural mortality. We can expect the
population to decline more sharply and to a greater extent
outside of the population objective if harvest mortality is
less compensatory or is strictly additive to natural mortality.
We found that the reactive decision framework performed

well when the carrying capacity increased, thus dampening
negative density-dependent processes, which caused increases
in survival and juvenile productivity and led to population
increases beyond the population objective when unharvested.
When the total population size was observed with or without
error, this decision framework kept the population from
exceeding the upper population objective. This was not the case
for ARM scenarios when the population was observed with
error; monitoring uncertainty led to the population models not
predicting the increasing population quick enough in order to
increase harvest at the appropriate rate. However, the simulated
RMP decision process relied on accurate knowledge of juvenile
recruitment (Pt). If Pt was biased low, it would decrease harvest
and thus allow the population to exceed the upper population
objective, depending on the level of bias, while the reverse is
true if Pt was biased high (B. Gerber, unpublished data).
As with many animal populations involving anthro-

pogenic take, management decisions related to allowable
take or how the type of regulations (e.g., daily bag limit, sea-
son length) translates into the number of individuals taken
is not exact nor even straightforward (Nichols et al. 1995).
Managers usually only have partial control over harvest
decisions (Williams 2011a). While we did not explicitly
investigate the uncertainty regarding partial controllability,
there are some important considerations for Sandhill Crane
decision making. Most important is that the RMP annual
harvest is routinely lower than the total allowable annual
harvest (although this proportion is increasing) and that
allocation fulfillment varies across breeding and wintering
states; Appendix S2: Fig S1). We can expect harvest deci-
sions would likely have a lesser impact on the population
than indicated in our results and perhaps increase the proba-
bility of meeting the population objective in years the popu-
lation is stable without harvest. Conversely, this may also
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lead to increased probability that the population exceeds the
objective in some years. Accounting for partial controllabil-
ity could be done simply, given that the allocation harvest
and estimated harvest by state are known (Appendix S2); if
the Generating model was affected only through partial ful-
fillment of the harvest allocation and the models also
adjusted for it, we expect our results to be similar, except
that allocated hunting permits would exceed harvest.

CONCLUSION

Ultimately, the decision to adopt an ARM framework will
depend on whether managers decide the benefits of the
ARM process outweigh the cost of its increased complexity,
compared to the simplicity, but increased risks of the current
reactive process. We found the current RMP crane decision
process performed adequately overall. A major limitation of
non-model based decision frameworks, is the difficulty of
accommodating future necessary changes in a logical way
(e.g., changes in the timing of management decisions, partial
controllability). By using a coherent and logical approach to
population prediction and decision making, such as ARM,
there is a foundational basis to implement future changes as
needed (e.g., altered system models to accommodate climate
change). However, as of yet, despite the lack of motivating
theory and reactive nature of the RMP crane decision pro-
cess, the RMP objective has been met in every year since
1997, except for one. The lack of a current problem is a
strong motivation for decision makers to maintain the status
quo, avoiding the short-term costs of modifying the decision
process. Crane managers would need to consider the poten-
tial consequences of the two decision processes and decide
whether the trade-offs in logical complexity and increased
expected performance in meeting objectives outweighs lim-
ited functional simplicity that has been shown to perform
adequately, so far.
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