Discrete distributions	Random variable (z)	Parameters	Moments	R functions	JAGS functions for likelihood of data	Conjugate relationship
Poisson $[z \lambda] = \frac{\lambda^{z}e^{-\lambda}}{z!}$	Counts of things that occur randomly over time or space, e.g., the number of birds in a forest stand, the number of fish in a kilometer of river, the number of prey captured per minute.	λ , the mean number of occurrences per time or space $\lambda = \mu$	$\mu = \lambda$ $\sigma^2 = \lambda$	<pre>dpois(x, lambda, log = FALSE) ppois(q, lambda) qpois(p, lambda), rpois(n, lambda)</pre>	y[i] ~ dpois(lambda)	$P(\lambda \mathbf{y}) =$ gamma $\left(\alpha + \sum_{i=1}^{n} y_i, \beta + n\right)$
Binomial $\begin{bmatrix} z \mid \eta, \phi \end{bmatrix} =$ $\binom{\eta}{z} \phi^{z} (1 - \phi)^{\eta - z}$ $\binom{\eta}{z} = \frac{\eta!}{z!(\eta - z)!}$ $\begin{bmatrix} z \mid \eta, \phi \end{bmatrix} \propto$ $\phi^{z} (1 - \phi)^{\eta - z}$	Number of "successes" on a given number of trials, e.g., number of survivors in a sample of individuals, number of plots containing an exotic species from a sample, number of terrestrial pixels that are vegetated in an image.	η , the number of trials ϕ , the probability of a success $\phi = 1 - \sigma^2/\mu$ $\eta = \mu^2/(\mu - \sigma^2)$	$\mu = \eta \phi$ $\sigma^2 = \eta \phi (1 - \phi)$	<pre>dbinom(x, size, prob, log = FALSE) pbinom(q, size, prob) qbinom(p, size, prob) rbinom(n, size, prob)</pre>	y[i] ~ dbin(p,n)	$P(p \mathbf{y}) =$ beta $(\alpha + y, \beta + n - y)$
Bernoulli $[z \phi] = \phi^z (1-\phi)^{1-\phi}$	A special case of the binomial z where the number of trials = 1 and the random variable can take on values 0 or 1. Widely used in survival analysis, occupancy models.	$ \phi, \text{ the probability} \\ that the random \\ variable = 1 \\ \phi = \mu \\ \phi = 1/2 + \\ 1/2 \sqrt{1 - 4 \sigma^2} $	$\mu = \phi$ $\sigma^2 = \phi (1 - \phi)$	<pre>dbinom(x, size=1, prob, log = FALSE) pbinom(q, size=1, prob) qbinom(p, size=1, prob) rbinom(n, size=1, prob) Note that size *must* = 1.</pre>	y[i]~dbern(p)	
Negative binomial $\begin{bmatrix} z \lambda, \kappa \end{bmatrix} = \frac{\Gamma(z+\kappa)}{\Gamma(\kappa)z!} \left(\frac{\kappa}{\kappa+\lambda}\right)^{\kappa} \times \left(\frac{\lambda}{\kappa+\lambda}\right)^{z}$ (Read R help about alternative parameterization.)	Counts of things occurring randomly over time or space, as with the Poisson. Includes dispersion parameter κ allowing the variance to exceed the mean.	λ, the mean number of occurrences per time or space. κ , the dispersion parameter. $\lambda = \mu$ $\kappa = \frac{\mu^2}{\sigma^2 - \mu}$	$\mu = \lambda$ $\sigma^2 = \lambda + \frac{\lambda^2}{\kappa}$	dnbinom(x, size, mu) pnbinom(q, size, mu) qnbinom(p, mu) rnbinom(n, size, mu) Size is the dispersion parameter, κ	<pre>y[i] ~ dnegbin(k / (k + lambda) , k) Uses alternative parameterization. The variable k is the dispersion parameter.</pre>	
Multinomial $\begin{bmatrix} \mathbf{z} \mid \eta, \phi \end{bmatrix} = \\ \eta! \prod_{i=1}^{k} \frac{\phi_{i}^{z_{i}}}{z_{i!}}$	Counts that fall into $k > 2$ categories, e.g., number of individuals in age classes, number of pixels in different landscape categories, number of species in trophic categories in a sample from a food web.	z a vector giving the number of counts in each category, ϕ a vector of the probabilities of occurrence in each category, $\sum_{i=1}^{k} \phi_i = 1$, $\sum_{i=1}^{k} z_i = \eta$	$\mu_{i} = \eta \phi_{i}$ $\sigma_{i}^{2} =$ $\eta \phi_{i} (1 - \phi_{i})$	<pre>rmultinom(n, size, prob) dmultinom(x, size, prob, log = FALSE)</pre>	y[i,]~dmulti(p[],n)	

Continuous Distributions	Random variable (z)	Parameters	Moments	R functions	JAGS function	Conjugate prior for	Vague Prior
Normal $\begin{bmatrix} z \mu, \sigma^2 \end{bmatrix} = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(z-\mu)^2}{2\sigma^2}}$	Continuously distributed quantities that can take on positive or negative values. Sums of things are normally distributed.	μ, σ^2	μ, σ^2	<pre>dnorm(x, mean, sd, log = FALSE) pnorm(q, mean, sd) qnorm(p, mean, sd) rnorm(n, mean, sd)</pre>	<pre># tau = 1/sigma^2# #likelihood y[i]~dnorm(mu,tau) #prior theta ~ dnorm(mu,tau)</pre>	normal mean (with known variance)	dnorm(0,1E-6) #This is scale dependent.
Lognormal $\begin{bmatrix} z \mid \alpha, \beta \end{bmatrix}$ $\frac{1}{z\sqrt{2\pi\beta^2}} e^{-\frac{(\ln z - \alpha)^2}{2\beta^2}}$	Continuously distributed quantities with non-negative values. Random variables that have the property that their logs are normally distributed. Thus if z is normally distributed then $\exp(z)$ is lognormally distributed. Products of things are lognormally distributed.	$\begin{array}{l} \alpha, \text{ the mean of } z \text{ on } \\ \text{the log scale} \\ \beta, \text{ the standard} \\ \text{deviation of } z \text{ on the} \\ \log \text{ scale} \\ \alpha = \log \left(\text{median}(z) \right) \\ \alpha = \log \left(\mu \right) - \\ 1/2 \log \left(\frac{\sigma^2 + \mu^2}{\mu^2} \right) \\ \beta = \\ \sqrt{\log \left(\frac{\sigma^2 + \mu^2}{\mu^2} \right)} \end{array}$	$\mu = e^{\alpha + \frac{\beta^2}{2}}$ median $(z) = e^{\alpha}$ $\sigma^2 = (e^{\beta^2} - 1) e^{2\alpha + \beta}$	<pre>dlnorm(x, meanlog, sdlog) plnorm(q, meanlog, 2 sdlog) qlnorm(p, meanlog, sdlog) rlnorm(n, meanlog, sdlog)</pre>	<pre>#likelihood y[i]~dlnorm(alpha,tau) #prior theta~ dlnorm(alpha,tau)</pre>)	
$\begin{array}{l} \operatorname{Gamma} \\ [z \alpha,\beta] = \\ \frac{\beta^{\alpha}}{\Gamma(\alpha)} z^{\alpha-1} e^{-\beta z} \\ \Gamma(\alpha) = \\ \int_0^\infty t^{\alpha-1} e^{-t} \mathrm{d}t . \end{array}$	The time required for a specified number of events to occur in a Poisson process. Any continuous quantity that is non-negative.	$\begin{aligned} \alpha &= \text{shape} \\ \beta &= \text{rate} \\ \alpha &= \frac{\mu^2}{\sigma^2} \\ \beta &= \frac{\mu}{\sigma^2} \\ \text{Note-be very careful} \\ \text{about rate, defined} \\ \text{as above, and scale} \\ &= \frac{1}{\beta}. \end{aligned}$	$\mu = \frac{\alpha}{\beta}$ $\sigma^2 = \frac{\alpha}{\beta^2}$	<pre>dgamma(x, shape, rate, log = FALSE) pgamma(q, shape, rate) qgamma(p, shape, rate) rgamma(n, shape, rate)</pre>	<pre>#likelihood y[i]~ dgamma(r,n) #prior theta~dgamma(r,n)</pre>	 Poisson mean normal precision (1/variance) n parameter (rate) in the gamma distribution 	dgamma(.001,.001)
Beta $\begin{bmatrix} z \alpha, \beta \end{bmatrix} = \\ B z^{\alpha - 1} (1 - z)^{\beta - 1} \\ B = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha) \Gamma(\beta)}$	Continuous random variables that can take on values between 0 and 1–any random variable that can be expressed as a proportion; e.g,survival, proportion of landscape invaded by exotic.	$\alpha = \frac{\left(\mu^2 - \mu^3 - \mu\sigma^2\right)}{\sigma^2}$ $\beta = \frac{\mu - 2\mu^2 + \mu^3 - \sigma^2 + \mu\sigma^2}{\sigma^2}.$	$\mu = \frac{\alpha}{\alpha + \beta}$ $\sigma^{2} = \frac{\alpha\beta}{(\alpha + \beta)^{2}(\alpha + \beta + 1)}$	<pre>dbeta(x, shape1, shape2) pbeta(q, shape1, shape2) qbeta(p, shape1, shape2) rbeta(n, shape1, shape2)</pre>	<pre>#likelihood y[i] ~ dbeta(alpha, beta) #prior theta ~ dbeta(alpha, beta)</pre>	p in binomial distribution	dbeta(1,1)
Dirichlet $[\mathbf{z} \boldsymbol{\alpha}] = \Gamma\left(\sum_{i=1}^{k} \alpha_i\right) \times \frac{\prod_{j=1}^{k} z_j^{\alpha_j - 1}}{\Gamma\left(\alpha_j\right)}$	Vectors of > 2 elements of continuous random variables that can take on values between 0 and 1 and that sum to one.	$\begin{aligned} \alpha_i &= \mu_i \alpha_0\\ \alpha_0 &= \sum_{i=1}^k \alpha_i \end{aligned}$	$\mu_i = \frac{\alpha_i}{\sum_{i=1}^k \alpha_i}$ $\sigma_i^2 = \frac{\alpha_i(\alpha_0 - \alpha_i)}{\alpha_0^2(\alpha_0 + 1)},$	<pre>library(gtools) rdirichlet(n, alpha) ddirichlet(x, alpha)</pre>	<pre>#likelihood y[]~ddrich(alpha[]) p[] ~ ddrich(alpha[]) y, alpha, p are vectors</pre>	vector p in multinomial distribution	ddrich(1,1,11)
	Any real number.	$\begin{aligned} \alpha &= \text{lower limit} \\ \beta &= \text{upper limit} \\ \alpha &= \mu - \sigma \sqrt{3} \\ \beta &= \mu + \sigma \sqrt{3} \end{aligned}$	$\mu = \frac{\alpha + \beta}{2}$ $\sigma^2 = \frac{(\beta - \alpha)^2}{12}$	<pre>dunif(x, min, max,log = FALSE) punif(q, min, max) qunif(p, min max) runif(n, min, max)</pre>	<pre>#prior theta~dunif(a,b)</pre>		a and b such that posterior is "more than entirely" between a and b