
Coding and Mathematical Definitions

Brian D. Gerber

December 10, 2024

Definitions of R Code

R script: the lines of code and comments that you are writing (filename.R).

R project: your R script, any variables you have created, and your current R environment (filename.Rproj).

R package: a set of functions/code that you can load into your script (examples - dplyr, sp).

R Comment: does not run as code, starts with #. You use comments to explain what your code is doing
in plain langauge.

Object or Variable: a unit of information that is stored in the workspace (computer memory) and can
be recalled or manipulated. ‘a’ is an object. Specifically, a vector of length 3.
a = c(3, 2, 1)

Element: a piece of information within an object. The 1st element of a is. . .
a[1]

[1] 3

Function: a command to take inputs (objects or elements) and manipulates it to provide an output, which
can be saved as a new object.
fun.text = function(x) {

paste("Your input variable is ", x, sep = "")
}

fun.text(4)

[1] “Your input variable is 4”
fun.text("INPUT")

[1] “Your input variable is INPUT”

Argument: a specific command within a function. Many functional arguments are preset and do not need
to be explitly stated.
x = c(1, 2, 3, NA)
mean(x)

[1] NA

1

na.rm is an argument of the function mean to ignore the missing value. Its
preset is FALSE. If you have na's you need to change the argument to 'TRUE'.
mean(x, na.rm = TRUE)

[1] 2

Types of R Objects and Mathematical Notation

Vector: 1 row, many columns OR 1 column many rows. Can be numbers of characters.
v = c(4, 1, 3)
is.vector(v)

[1] TRUE
length(v)

[1] 3

Math notation (capitalized & lower case): v⃗ or v

v =
[
4 1 3

]
(1)

Matrix: Generalization of vectors. Can have 1 or more rows and columns. Only numbers.
M = matrix(1:10, nrow = 2)
M

[,1] [,2] [,3] [,4] [,5]
[1,] 1 3 5 7 9
[2,] 2 4 6 8 10

dim(M)

[1] 2 5

is.vector(M)

[1] FALSE

is.matrix(M)

[1] TRUE

Math notation (capitalized & upper case): M

M =
[
1 3 5 7 9
2 4 6 8 10

]
(2)

Array: Generalization of matrices. Can be n dimensional. Only numbers.

2

arr = array(1:100, dim = c(3, 4, 3))
arr

, , 1
##
[,1] [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12
##
, , 2
##
[,1] [,2] [,3] [,4]
[1,] 13 16 19 22
[2,] 14 17 20 23
[3,] 15 18 21 24
##
, , 3
##
[,1] [,2] [,3] [,4]
[1,] 25 28 31 34
[2,] 26 29 32 35
[3,] 27 30 33 36

dim(arr)

[1] 3 4 3

is.vector(arr)

[1] FALSE

is.matrix(arr)

[1] FALSE

is.array(arr)

[1] TRUE

25 28 31 34

26 29 32 35

27 30 33 36
13 16 19 22

14 17 20 23

15 18 21 24
1 4 7 10

2 5 8 11

3 6 9 12

List: Can store any type of objects together.

3

list1 = vector("list", 2)
list1[[1]] = v
list1[[2]] = M
list1[[3]] = arr

is.list(list1)

[1] TRUE

length(list1)

[1] 3

list1[[1]]

[1] 4 1 3

Important Functions
For Loop: To do a task many times. Simple, but inefficient
#First, create a large matrix

x <- matrix(rnorm(400*4000), ncol=400)

#Second, create a vector to store results
mx <- rep(NA, nrow(x))

#Third, for each row of the matrix, find the maximum value and store it in mx using
#a loop. We will do this from index 1 to the max number of rows (nrow(x)). We will
#iterate using index i.

for(i in 1:nrow(x)){
mx[i] <- max(x[i,])

}

Apply: To do a task many times using vectorization. Much faster then a for loop.
The 1 indicates to the function 'max' on the rows of the object 'x'. A 2 would
#that this function should be applied to each column of the object 'x'.
mx2 <- apply(x, 1, max)

4

